Electronic Supplementary Information (ESI)

A Luminescent lyotropic liquid crystal with UV irradiation induced photochromism

Qingrun Li , Juan Qiu, Hongguo Liu, Xiao Chen*

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China

Corresponding author: Xiao Chen

Address: Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China

E–mail: xchen@sdu.edu.cn.

Tel.: +86–531–88365420.

Fax: +86–531–88564464.
1. Calculation of the lattice parameters (D) for lyotropic liquid crystals

The lattice parameters of LLC phases, D, denoting the distance between two adjacent cylinder centers for the hexagonal phase, can be obtained from the first Bragg scattering position (q_1) in SAXS curves according to eq. (1).

$$D = \frac{4\pi}{\sqrt{3}} q_1$$

Hexagonal phase: $D = \frac{4\pi}{\sqrt{3}} q_1$ \hspace{1cm} (1)

Table S1. The lattice parameters (D) for LLC samples before and after UV irradiation (4 h) with Eu(DBM)$_3$BQ or BQ doped or undoped at [C$_{12}$mim]Br concentration of 80%.

<table>
<thead>
<tr>
<th>Samples</th>
<th>q_1 (nm$^{-1}$)</th>
<th>Eu(DBM)$_3$BQ-H$_1$</th>
<th>Eu(DBM)$_3$BQ-4h-H$_1$</th>
<th>BQ-H$_1$</th>
<th>BQ-4h-H$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1 (nm$^{-1}$)</td>
<td>1.957</td>
<td>1.912</td>
<td>1.912</td>
<td>1.957</td>
<td>1.957</td>
</tr>
<tr>
<td>D (nm)</td>
<td>3.71</td>
<td>3.79</td>
<td>3.79</td>
<td>3.71</td>
<td>3.71</td>
</tr>
</tbody>
</table>

2. MS measurement for Eu(DBM)$_3$BQ and Eu(DBM)$_3$·2H$_2$O

Fig. S1 MS spectra for Eu(DBM)$_3$BQ (a) and Eu(DBM)$_3$·2H$_2$O (b).
3. Photograph of Eu(DBM)$_3$BQ in LLCs under UV light

![Photograph of Eu(DBM)$_3$BQ in LLCs under UV light](image)

Fig. S2 Photographs taken under UV light at 305 nm for Eu(DBM)$_3$BQ in LLCs, which were irradiated under continuously UV light one month before.

4. UV/vis absorption spectra of BQ, DBM and Eu(DBM)$_3$BQ

![UV/vis absorption spectra](image)

Fig. S3 UV/vis absorption spectra of Eu(DBM)$_3$BQ (blue), BQ (black) and DBM (red) in chloroform solution (4.6×10^{-3} mol·L$^{-1}$).

5. DFT calculation on ground energy of BQ conformations

Geometries of BQ molecule optimized as a function of the dihedral angle between the two quinoline planes using the DFT based the model at the B3LYP /6-31G(d,p) level. The result shows two stable conformers of BQ which one having a dihedral angle of about 90 ° (cis) and the other
being 180 ° (trans) (Fig. S3). Ground state energy of the cis and trans conformers are -222.471 eV and -222.786 eV respectively.

![Geometries of two conformers of BQ (180 ° and 90 °)](image)

Fig. S4 Geometries of two conformers of BQ (180 ° and 90 °) using DFT based method with B3LYP/6-31G(d,p) basis sets.

6. Luminescence properties of Eu(DBM)$_3$·2H$_2$O

![Emission spectra](image)

Fig. S5 Emission spectra Eu(DBM)$_3$·2H$_2$O in chloroform solutions (4.6×10$^{-3}$ mol·L$^{-1}$) before (black line) and after (red line) UV irradiation at 302 nm for 4 hours.
7. SAXS patterns for LLC samples doped with BQ

![SAXS patterns](image)

Fig. S6 SAXS patterns for LLC samples at [C_{12}mim]Br concentration of 80% before and after UV irradiation (4 h) with BQ doped or undoped.

8. Fluorescence life time of 2,2' biquinoline (BQ) in LLC

<table>
<thead>
<tr>
<th>Samples</th>
<th>τ₁ (ns)</th>
<th>Contribution (%)</th>
<th>τ₂ (ns)</th>
<th>Contribution (%)</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ (0h)</td>
<td>0.974</td>
<td>46.3</td>
<td>4.885</td>
<td>53.7</td>
<td>1.005</td>
</tr>
<tr>
<td>BQ (2h)</td>
<td>1.09</td>
<td>32.4</td>
<td>4.263</td>
<td>67.6</td>
<td>1.007</td>
</tr>
</tbody>
</table>

Table S2. Fluorescence life time of 2,2’ biquinoline (BQ) before and after UV irradiation