Supporting information

Ellipsometry

Fig. S1 shows the development of the thickness of the SF adsorbed layers (δ_{ad}) at the air/water interface with the adsorption time (t_{ad}) obtained for different pH values by ellipsometry. It can be seen that δ_{ad} of the SF adsorbed layers at the air/water interface first increases rapidly within the initial 15 min, and then increases more slowly until reaching an equilibrium value within approximately 250 min. Moreover, δ_{ad} of the SF adsorbed layers increases with the SF concentration and increases with t_{ad} more rapidly at high SF concentrations.
Fig. S1 Development of the thickness of the SF adsorbed layers at the air/water interface with the adsorption time for different pH values: (a) pH=3; (b) pH=4; (c) pH=7.

Interfacial dilatational rheology

Fig. S2 presents the change of the loss factor of the SF adsorbed layers at the air/water interface with the frequency for different pH values. It can be found that the loss factor
that represents the ratio of the viscous and elastic part is < 0.25 for the adsorbed SF layers formed at different pH and C_{SF}, indicating that the interfacial SF films are more elastic than viscous at all pH levels.
Fig. S2 Change of the loss factor of the SF adsorbed layers at the air/water interface with the frequency for different pH values: (a) pH=3; (b) pH=4; (c) pH=7.