Supporting information for

Polysulfide-Driven Low Charge Overpotential for Aprotic Lithium-Oxygen Batteries

Yin Zhoua,b,c, Zhiyang Lyub, Zhenjie Liud, Wenrui Daib,c, Rui Guob, Jinlin Yangb,c, Xinhang Cuic, Yong Zhaoe, Ming Line, Min Laia, Zhangquan Pengd and Wei Chenb,c,e*

1School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
2Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
3National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China.
4State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
5Department of Physics, National University of Singapore, 2 Science Drive 3, 117543, Singapore.
6Institute for Advanced Study and Department of Physics, Nanchang University, Nanchang, 330031, P.R. China
7Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way. Innovis, Singapore.
*Corresponding Author E-mail: phycw@nus.edu.sg (W Chen)
Figure S1. SEM images showing the morphology of CNT cathode (a) before charge and (b) after the 1st discharge. Scale bars, 200 nm (a), 500 nm (b).

Noted: The toroid-type products are observed after the 1st discharge process for CNT cathode.
Figure S2. XRD patterns of CNT(1000 mAh g⁻¹) and CNT/Li₂S₆ (1000 mAh g⁻¹ and 7500 mAh g⁻¹) after the 1ˢᵗ discharge.
Figure S3. EDX result of the CNT/Li$_2$S$_6$ after the 1st discharge.
Figure S4. HR-TEM image for the 1st discharge products of CNT/Li\textsubscript{2}S\textsubscript{6} cathode.
Figure S5. S 2p core-level XPS peak of the CNT cathode with Li$_2$S$_6$ additives before charge.

CNT was impregnated in the TEGDME solvent with Li$_2$S$_6$ additives, and then CNT was washed by acetonitrile and dried to do the XPS characterizations. We didn’t observe any obvious S 2p in XPS, demonstrating that the Li$_2$S$_6$ additives can be fully washed away by acetonitrile. Therefore, after the 1st discharge, the S signal observed on the CNT/Li$_2$S$_6$ cathode mainly originates from the discharge product, not from the remained Li$_2$S$_6$ additives.
Figure S6. DEMS of CNT/Li$_2$S$_6$ for (a) the 1$^{\text{st}}$ and (b) the 50$^{\text{th}}$ discharge process at a current of 0.7 mA at a limited capacity of 500 mAh g$^{-1}$.

The consumed ratio of electron and O$_2$ was confirmed by DEMS. O$_2$ is the only consumed gas and no evidence for the consumption of other gases (CO$_2$, H$_2$ etc.) during discharge process. The number of electrons per O$_2$ molecule for CNT/Li$_2$S$_6$ cathode is 1.23 (Figure S7a, Table S1). In addition, after the 50$^{\text{th}}$ discharge process, no O$_2$ consumption can be observed for the first platform.
Figure S7. Cyclic voltammograms of CNT/Li$_2$S$_6$ under O$_2$, where CNT/Li$_2$S$_6$ is first discharged to 2.0 V, then charged to 4.3 V, and finally the CNT/Li$_2$S$_6$ cathode conducts the second discharge process to 2.0 V.
Figure S8. (a) Cyclic voltammograms and (b) the corresponding 1st charge-discharge curves (b) of Li$_2$S$_6$ (Li-S batteries under O$_2$), where Li$_2$S$_6$ is first charged to 4.3 V, and then is discharged to 2.7 V; (c) cyclic voltammograms and (d) the corresponding 1st charge-discharge curve of Na$_2$S$_2$O$_3$ (Li-Na$_2$S$_2$O$_3$ batteries under O$_2$), where Na$_2$S$_2$O$_3$ is first charged to 4.3 V, and then is discharged to 2.7 V, (e) discharge-charge curves of
the \(\text{Li}_2\text{S}_6 \) under Ar (Li-S batteries under Ar), where \(\text{Li}_2\text{S}_6 \) is first discharged to 1.5 V, and then is charged to 3.0 V.

Since \(\text{Li}_2\text{S}_4\text{O}_6 \) is inactive in TEGDME solvent,[1] polysulfide (\(\text{Li}_2\text{S}_2 \) and soluble \(\text{Li}_2\text{S}_6 \)) and thiosulfate (\(\text{Li}_2\text{S}_2\text{O}_3 \)) are main active materials for charge process. Therefore, the charge processes of polysulfide (\(\text{Li}_2\text{S}_2 \) and \(\text{Li}_2\text{S}_6 \)) and \(\text{Li}_2\text{S}_2\text{O}_3 \) are separately studied by assembling two kinds of batteries: Li-S batteries (active materials: \(\text{Li}_2\text{S}_6 \) and \(\text{Li}_2\text{S}_2 \)) and Li/Na\(\text{S}_2\text{O}_3 \) batteries (active materials: \(\text{Na}_2\text{S}_2\text{O}_3 \)). Because the ORR occurred at 2.7 V, we should limit the discharge voltage of Li-S batteries and Li/Na\(\text{S}_2\text{O}_3 \) batteries above 2.7 V to separately study the discharge behavior. Therefore, we first charge the Li/Na\(\text{S}_2\text{O}_3 \) batteries and Li-S batteries to 4.0 V followed by discharging to 2.7 V under O\(_2\) atmosphere.

For Li-S batteries, charge processes of \(\text{Li}_2\text{S}_2 \) and \(\text{Li}_2\text{S}_6 \) were separately conducted. In terms of charge process of \(\text{Li}_2\text{S}_6 \) (Li-S batteries under O\(_2\)), two typical peaks at 3.14 V and 3.94 V (Figure S8a) as well as corresponding charge curve (Figure S8b) are observed. The peak at 3.14 V corresponds to the oxidation of \(\text{Li}_2\text{S}_6 \) to high-order polysulfide (\(\text{Li}_2\text{S}_x, 6 \leq x \leq 8 \)), while the peak at 3.94 V is ascribed to the oxidation of high-order polysulfide to sulfur (Figure S8a).[2] These two oxidation peaks are also be identified from CNT/\(\text{Li}_2\text{S}_6 \) cathode, implying that the peaks at 3.22 V and 3.86 V of CNT/\(\text{Li}_2\text{S}_6 \) are due to oxidation of low-order polysulfide (\(\text{Li}_2\text{S}_2 \) and \(\text{Li}_2\text{S}_6 \)) to high-order polysulfide (equation 3, \(\text{Li}_2\text{S}_x, 6 \leq x \leq 8 \)), and high-order polysulfide to sulfur, respectively.
For the oxidation process of Na$_2$S$_2$O$_3$ (Li-Na$_2$S$_2$O$_3$ batteries), the peak at 3.51 V (Figure S8c and S8d) is due to the oxidation of Li$_2$S$_2$O$_3$ to Li$_2$S$_4$O$_6$ and the capacity of 258 mAh g$^{-1}$ is near the theoretical capacity of Na$_2$S$_2$O$_3$ (339 mAh g$^{-1}$). Meanwhile, similar peak (3.55 V) is detected by charge process of CNT/Li$_2$S$_6$ cathode (Figure 3a), indicating that the middle peak of CNT/Li$_2$S$_6$ is due to the oxidation of Li$_2$S$_2$O$_3$ to Li$_2$S$_4$O$_6$.

For discharge process of Li-S batteries (active materials: Li$_2$S$_6$) under O$_2$, the peak at 2.84 V is due to the reduction of sulfur to high-order polysulfide (Li$_2$S$_x$, 6$\leq x \leq$8). In addition, inactive Li$_2$S$_4$O$_6$ is inactive and cannot be reduced from 4.0 V o 2.7 V. Therefore, the new reduction peak at 2.84 V of CNT/Li$_2$S$_6$ belongs to the conversion of sulfur to high-order polysulfide (Li$_2$S$_x$, 6$\leq x \leq$8).

It should be noted that the voltage of oxidation and reduction plateaus of Li$_2$S$_6$ (Li-S batteries under O$_2$) under O$_2$ are different from the typical oxidation and reduction potential of lithium-sulfur (Li-S) batteries under Ar (Figure S8e). This is due to the fact that Li$_2$S$_6$ (Li-S batteries under O$_2$) is charged under O$_2$ atmosphere, resulting in the obviously positive voltage shift of both oxidation and reduction plateau.
Figure S9. (a) Discharge curves of Li$_2$S$_6$ (Li-S batteries under Ar) when discharging to 1.85 V; (b) S 2p core level XPS spectrum of the discharge product when Li$_2$S$_6$ (Li-S batteries under Ar) is discharged to 1.85 V; (c) charge-discharge curves of Li$_2$S$_2$ (Li-S batteries under O$_2$). Li$_2$S$_2$ is first charged to 4.0 V, and then is discharged to 2.7 V.

Note: The mass of active materials in Figure S9a and Figure S9c is calculated by the mass of Li$_2$S$_6$, and CNT respectively.

For the oxidation process of Li$_2$S$_2$ under O$_2$, we obtained the Li$_2$S$_2$ when Li$_2$S$_6$ is discharged to 1.85 V under Ar. The main discharge product is Li$_2$S$_2$ despite the existence of Li$_2$S (Li-S batteries under Ar, Figure S9b). The Li$_2$S$_2$ is charged to 4.0 V, and then is discharged to 2.7 V under O$_2$ (Li-S batteries under O$_2$). During charge process, the platform at 3.14 V is due to the oxidation of Li$_2$S$_2$ to high-order polysulfide (Figure 9c, Li$_2$S$_x$, $6 \leq x \leq 8$), while the platform at 3.89 V is due to the oxidation of high-order polysulfide (Figure 9c, Li$_2$S$_x$, $6 \leq x \leq 8$) to sulfur. For discharge process, the discharge process from 3.2 V to 2.7 V is due to the reduction of sulfur to high-order polysulfide (Figure 9c, Li$_2$S$_x$, $6 \leq x \leq 8$)
Figure S10. The Li$_2$S$_6$ additives were charged to 3.6 V and 4.0 V under O$_2$, respectively. (a) S 2p core level XPS spectrum of the discharge product when Li$_2$S$_6$ (under O$_2$) is charged to 3.6 V; (b) S 2p core level XPS spectrum of the discharge products when Li$_2$S$_6$ (under O$_2$) is charged to 4.0 V.

We separately charged the Li$_2$S$_6$ (Li-S batteries under O$_2$) to 3.6 V and 4.0 V. No S signal can be identified in XPS results when Li$_2$S$_6$ is charged to 3.6 V, indicating the charge process of Li$_2$S$_6$ from 3.0 V to 3.6 V is due to oxidation of Li$_2$S$_6$ to soluble high-order polysulfide (Li$_2$S$_x$, $6 \leq x \leq 8$). Due to high solubility of high-order polysulfide, high-order polysulfide is totally washed by acetonitrile and cannot be detected by XPS (Figure S10a). When Li$_2$S$_6$ is charged to 4.0 V (Li-S batteries under O$_2$), the typical S$_{2p}$ peaks of charged products are in consistence with S$_8$ molecules. This result indicated that charge process of Li$_2$S$_6$ from 3.6 V to 4.0 V was due to oxidation of high-order polysulfide (Li$_2$S$_x$, $6 \leq x \leq 8$) to sulfur.
Figure S11. Charge profile of the CNT/S cathode under O$_2$.

The CNT/S cathode was charged from 3.0 V to 4.0 V under O$_2$. The voltage increases sharply and no obvious platform can be observed, indicating that sulfur is stable and cannot be oxidized from 3.0 V-4.0 V under O$_2$ atmosphere.
Figure S12. Cycle performance of Li$_2$S$_6$ (Li-S batteries under Ar). The higher charge capacity compared to the discharge capacity is due to the shuttle effect.
Figure S13. (a) Raman spectra of CNT/Li$_2$S$_6$ cathode after 50 cycles; (b) SEM images of CNT/Li$_2$S$_6$ cathode after 50th recharge; (c)-(d) EDX mapping of O and S for selected area in panel (b).
Table S1. O$_2$ electrochemistry quantified by DEMS: ratios of the number of electrons to oxygen molecules upon reduction (discharge process).

<table>
<thead>
<tr>
<th>Cycle number</th>
<th>discharge(e/O$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNT(Li$_2$S$_6$)</td>
<td>1 1.23</td>
</tr>
<tr>
<td></td>
<td>50 1.13</td>
</tr>
</tbody>
</table>

Table S2. Summary of carbon-based catalysts and their related performance.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Charge overpotential</th>
<th>Cycle performance</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au@cracked carbon submicron tube</td>
<td>1.3 V at 400 mA g⁻¹</td>
<td>112 cycles at 400 mA g⁻¹ with 1000 mAh g⁻¹</td>
<td>[4]</td>
</tr>
<tr>
<td>Reduced graphene oxide (LiI)</td>
<td>around 0 V at 100 mA g⁻¹</td>
<td>2000 cycles at 1000 mA g⁻¹ with 1000 mAh g⁻¹</td>
<td>[5]</td>
</tr>
<tr>
<td>Carbonized and activated wood/Ru</td>
<td>0.72 V at 0.1 mA cm⁻¹</td>
<td>100 cycles at 0.1 mA cm⁻¹ with 0.6 mAh cm⁻¹</td>
<td>[6]</td>
</tr>
<tr>
<td>Mesoporous Carbon Nanocube/Ru (LiNO₃)</td>
<td>0.14 V at 200 mA g⁻¹</td>
<td>120 cycles at 400 mA g⁻¹ with 1000 mAh g⁻¹</td>
<td>[7]</td>
</tr>
<tr>
<td>Polyethylene film@CNT</td>
<td>0.4 V at 2000 mA g⁻¹</td>
<td>610 cycles at 400 mA g⁻¹ with 1000 mAh g⁻¹</td>
<td>[8]</td>
</tr>
<tr>
<td>Ketjen Black (UH₂O₂)</td>
<td>0.26 V at 100 mAg⁻¹</td>
<td>50 cycles at 500 mAg⁻¹ with 1000 mAh g⁻¹</td>
<td>[9]</td>
</tr>
<tr>
<td>Textile</td>
<td>0.75 V at 0.1 mA cm⁻¹</td>
<td>50 cycles at 0.1 mA cm⁻¹ with 1.0 mAh cm⁻¹</td>
<td>[10]</td>
</tr>
<tr>
<td>ZnO/VACNTs</td>
<td>0.63 V at 0.1 mA cm⁻¹</td>
<td>112 cycles at 0.1 mA cm⁻¹ with 1000 mAh g⁻¹</td>
<td>[11]</td>
</tr>
<tr>
<td>CNT/Li₂S₆</td>
<td>0.19 V at 0.5 A g⁻¹</td>
<td>147 cycles at 0.5 A g⁻¹ with 500 mAh g⁻¹</td>
<td>This work</td>
</tr>
</tbody>
</table>
References