Electronic supplementary Information

High-Performance Pseudocapacitive Microsupercapacitors with Three-Dimensional Current Collector of Vertical ITO Nanowire Arrays

Jingwei Du,^{a, b} Yirong Zhao,^{a, b} Zemin Zhang,^{a, b} Xuemei Mu,^{a, b} Xiao Jiang,^{a, b} Baoyu Huang,^{a, b}

Yaxiong Zhang,^{a, b} Shengming Zhang,^{a,b} Zhenxing Zhang*^{a, b} and Erqing Xie*^{a, b}

^a. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

^b. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou

University, Lanzhou 730000, China

* Corresponding author: E-mail: zhangzx@lzu.edu.cn (Z.Zhang); xieeq@lzu.edu.cn (E.Xie)

Calculation

The areal capacitance from CV curves can be calculated by Eq. 1:

$$C_{A} = \frac{\int I(v)dv}{AVS}$$
(1)

Where C_A is the areal capacitance (mF cm⁻²), *I* is the response current (A), *A* is the area of electrodes (cm²), *V* is the voltage window (V), and *S* is the scan rate (mV s⁻¹). The specific capacitance from GCD curves can be calculated by Eq. 2:

$$\frac{I\Delta t}{C_A = \overline{AV}} \tag{2}$$

Where C_A is the areal capacitance (mF cm⁻²), *I* is the discharge current (A), *A* is the area of electrode (cm²), Δt is the discharge time (s), and *V* is the voltage window (V).

The areal energy density of the device can be calculated by the Eq. 3:

$$E_A = \frac{C * V^2}{2} \tag{3}$$

and the areal power density is given by Eq. 4:

$$P_A = \frac{E}{t}$$

Where E_A is the areal energy density (Wh cm⁻²), C is the areal capacitance (mF cm⁻²) calculated by GCD curves, V is the voltage window (V), P_A is the areal power density (W cm⁻²), and t is the discharge time (s).

(4)

The volumetric energy density of the device can be calculated by the Eq. 3:

$$E_V = \frac{C * V^2}{2 * h}$$
(5)

and the volumetric power density is given by Eq. 4:

$$\frac{E}{P_V = t}$$
(6)

Where E_V is the energy density (Wh cm⁻³), C is the areal capacitance (mF cm⁻²) calculated by GCD curves, V is the voltage window (V), h is the thickness of electrode (cm), P_V is the volumetric power density (W cm⁻³), and t is the discharge time (s).

Fig. S1 SEM images of ITO NWs-MnO₂ based electrodes with different ED time of (a) 0 min, (b)

40 min, (c) 90 min, (d) 120 min, (e) 240 min, (f) 360 min. Scale bar is 10 $\mu m.$

Fig. S2 The comparison of voltage-time curves between ITO NWs@MnO₂-2 and ITO@MnO₂-2 under the process of CCED.

Fig. S3 SEAD images of (a) ITO NWs and (b) ITO NWs@MnO₂.

Fig. S4 (a) XPS survey spectrum of ITO NWs. (b) and (c) show the level spectrum of In and Sn of ITO NWs, respectively. (d) XPS survey spectrum of ITO NWs@MnO₂-360. (e) and (f) show the level spectrum of Mn and O of ITO NWs, respectively.

Fig. S5 A fitting linear relationship observed between areal capacitance and ED time of MnO₂.

Fig. S6 (a) CV curves and (b) GCD curves of ITO NWs@MnO₂-0.

Fig. S7 (a) CV curves and (b) GCD curves of ITO NWs@MnO₂-40.

Fig. S8 (a) CV curves and (b) GCD curves of ITO NWs@MnO₂-90.

Fig. S9 (a) CV curves and (b) GCD curves of ITO NWs@MnO₂-120.

Fig. S10 (a) CV curves and (b) GCD curves of ITO NWs@MnO₂-240.

Fig. S11 SEM image of ITO-MnO₂-2.