Electronic Supplementary Information

Extremely low self-discharge solid-state supercapacitor via confinement effect of ion transfer

Zixing Wanga, Xiang Chua, Zhong Xua, Hai Suc, Cheng Yana, Fangyan Liua, Bingni Gua, Haichao Huanga, Da Xionga, Hepeng Zhanga, Weili Denga, Haitao Zhang*, a, Weiqing Yang*, a,b

a Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China

b State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, PR China

c School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, PR China

* Correspondence should be addressed to W. Yang (e-mail: wqyang@swjtu.edu.cn) or H. Zhang (e-mail: haitaozhang@swjtu.edu.cn).
Fig. S1 The layered structure of bentonite clay. (a) Schematic illustration of the crystal structure of the bentonite clay. (b) The XRD patterns of the bentonite clay. (c) SEM image of the bentonite clay. The lattice structure of bentonite clay consists of ~1 nm thin layers with an octahedral layer of Al-O unit sandwiched between two tetrahedral layers of Si-O units.
Fig. S2 Ion models for a) EMIM$^+$ and b) BF$_4^-$.
Fig. S3 EDS images of the bentonite after self-discharge process.
Fig. S4 The Contact Angle test of the solid film produced. (a) Water and (b) ionic liquid.
Fig. S5 The DSC curves of the EMIMBF$_4$, bentonite clay and the BISE. The weight loss of ionic liquid is mainly due to the volatilization of trace impurities and the decomposition and carbonization of ionic liquid. The weight loss of bentonite clay is mainly due to the evaporation of water adsorbed on the surface and between layers, and the decomposition of bentonite clay.
Fig. S6 The calculation of the ionic conductivity.

\[
\sigma = \frac{d}{R \times S}
\]

\(d\) (cm) — the thickness of the conductor;

\(R\) (Ω) — the conductor resistance;

\(S\) (cm\(^2\)) — the cross-sectional area of the conductor.
Fig. S7 EIS spectra of the BISE electrolyte at (a) 25 °C, (b) 50 °C and (c) 75 °C.
Fig. S8 SEM images of the BISE. (a) Before the self-discharge, (b) after the self-discharge.
Fig. S9 The self-discharge of different electrode materials. (a) Decay of open circuit potential for the AC based supercapacitor and hCTNs based supercapacitor. (b) The corresponding pore size distributions of the AC and hCTNs calculated by density functional theory. SEM images of the (c) AC and (d) hCTNs.
Fig. S10 Open circuit potential decays for conventional supercapacitors and BISE solid-state supercapacitors. BISE-based supercapacitors show a very low self-discharge rate of only 35.9% after 24 h. In contrast, the open circuit potential of the conventional supercapacitors with cellulose membrane dropped by 70.3%. Therefore, this BISE can not only reduce the self-discharge of supercapacitors with ionic liquid electrolyte, but also reduce the self-discharge of supercapacitors with commercial organic electrolyte.
Fig. S11 Electrochemical properties of BISE-based supercapacitors in different temperatures. (a) Typical CV curves of BISE-based supercapacitors in different temperatures at a scan rate of 5 mV s$^{-1}$. (b) GCD curves of BISE-based supercapacitors in different temperatures at a current density of 0.5 mA cm$^{-2}$. (c) Nyquist plots. (d) The areal capacitance values at different current densities.
Supplementary Table

Table. S1 The comparison of BISE-based supercapacitors with most other reported supercapacitors.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Electrolyte</th>
<th>Approach used</th>
<th>Self-discharge rate</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>0.5M biredox IL in BMImTFSI IL</td>
<td>biredox ionic liquids</td>
<td>2.8→2.5 V (6 h 11%)</td>
<td>[1]</td>
</tr>
<tr>
<td>AC</td>
<td>6 M KOH</td>
<td>surfactant additives</td>
<td>0.8→0.504 V (20 h 37%)</td>
<td>[2]</td>
</tr>
<tr>
<td>AC</td>
<td>PYR₄TFSI</td>
<td>ionic liquids</td>
<td>2.8→1.5 V (72 h 46%)</td>
<td>[3]</td>
</tr>
<tr>
<td>N-doped carbon nanosheets</td>
<td>0.5 M H₂SO₄</td>
<td>o-benzenediol functional group grafted carbon electrodes nematic liquid crystal</td>
<td>1.4→0.7 V (4 h 50%)</td>
<td>[4]</td>
</tr>
<tr>
<td>AC</td>
<td>1 M TEMABF₄ in acetonitrile</td>
<td>5CB as an additive in electrolyte</td>
<td>2.0→1.42 V (24 h 29%)</td>
<td>[5]</td>
</tr>
<tr>
<td>ACF</td>
<td>TEABF₄/PC</td>
<td>tailoring the electrode/electrolyte configuration</td>
<td>2.0→1.2 V (48 h 40%)</td>
<td>[6]</td>
</tr>
<tr>
<td>SWNT macrofilms</td>
<td>1 M TEABF₄/PC</td>
<td>modification of electrodes</td>
<td>2.0→0.5 V (14.92 h 75%)</td>
<td>[7]</td>
</tr>
<tr>
<td>AC</td>
<td>PSiP/IL solid electrolyte</td>
<td>PSiP/IL solid electrolyte</td>
<td>2.5→1.5 V (48 h 60 °C 40%)</td>
<td>[8]</td>
</tr>
<tr>
<td>N-doped porous graphene</td>
<td>EMIMBF₄</td>
<td>graphene electrode prepared from molten salt method</td>
<td>3.0→1.5 V (4.3 h 50%)</td>
<td>[9]</td>
</tr>
<tr>
<td>AC</td>
<td>1 M tetrabutylammonium hexafluorophosphate</td>
<td>ultra-thin insulating block layer</td>
<td>2→1.44 V (1 h 28%)</td>
<td>[10]</td>
</tr>
<tr>
<td>YP-80F</td>
<td>BMImBF₄</td>
<td>ionic liquids</td>
<td>2.5→1.44 V (24 h 42%)</td>
<td>[11]</td>
</tr>
<tr>
<td>Graphene hydrogel</td>
<td>1 M H₂SO₄</td>
<td>Nafion membrane as the separator</td>
<td>0.8→0.3 V (3.2 h 63%)</td>
<td>[12]</td>
</tr>
<tr>
<td>AC</td>
<td>SnF₂/VOSO₄/H₂SO₄ aqueous electrolyte</td>
<td>an ion exchange membrane</td>
<td>1.4→1.2 V (10 h 14%)</td>
<td>[13]</td>
</tr>
<tr>
<td>AC</td>
<td>Na₂SO₄ / Potassium Ferricyanide aqueous electrolyte</td>
<td>cation exchange membrane</td>
<td>0.8→0.6 V (10 h 25%)</td>
<td>[14]</td>
</tr>
<tr>
<td>AC fiber cloth</td>
<td>Bentonite clay@ionic liquid based solid-state electrolyte</td>
<td>confinement effect of ion transfer</td>
<td>3.0→2.0 V (60 h 29%)</td>
<td>This work</td>
</tr>
</tbody>
</table>
Reference

