Supporting Information

Thermally resistant thermadapt shape memory crosslinked polymers based on silyl ether dynamic covalent linkages for self-folding and self-deployable smart 3D structures

Zhenjie Ding, Li Yuan, Guozheng Liang* and Aijuan Gu*

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
Department of Materials Science and Engineering
College of Chemistry, Chemical Engineering and Materials Science
Soochow University, Suzhou 215123, P. R. China

* Corresponding author: Tel: +86 512 65880967; Fax: +86 512 65880089.
E-mail address: lgzheng@suda.edu.cn (GZ Liang); ajgu@suda.edu.cn (AJ Gu).
Table S1 Gel fraction of EPSis in DMF at 150 °C for 24 h

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gel fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSi-0.3</td>
<td>97.7±0.08</td>
</tr>
<tr>
<td>EPSi-0.5</td>
<td>98.4±0.09</td>
</tr>
<tr>
<td>EPSi-0.7</td>
<td>99.2±0.10</td>
</tr>
<tr>
<td>EPSi-0.9</td>
<td>99.4±0.06</td>
</tr>
</tbody>
</table>

Fig. S1 Structures of model compounds used in the study.

Fig. S2 1H NMR spectrum of model compound 1.
Fig. S3 1H NMR spectrum of model compound 2.

Fig. S4 1H NMR spectrum of model compound 5.
Fig. S5 1H NMR spectrum of model compound 6.

Fig. S6 1H NMR spectra of model compounds mixture (a) and after holding at 160 °C for 1 h (b).
Fig. S7 Mass spectra of model compounds mixture of 5 and 6.

Fig. S8 Mass spectra of model compounds mixture of 5 and 6 after holding at 160 °C for 1 h.
Fig. S9 Multiple reconfiguration of EPSi-0.3 (a), EPSi-0.5 (b), EPSi-0.7 (c) and EPSi-0.9 (d).
Table S2 Integrated performances of thermadapt shape memory polymers (TASMPs) in literatures and this work.

<table>
<thead>
<tr>
<th>TASMP (sample name)</th>
<th>Dynamic bonds</th>
<th>T_g/T_m (°C)</th>
<th>T_{di} (°C)</th>
<th>Tensile properties</th>
<th>R_f (%)</th>
<th>R_s (%)</th>
<th>R_{ret} (%)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSi-0.5</td>
<td>Hydroxyl silyl ether bonds</td>
<td>129.3</td>
<td>314</td>
<td>82.4 ± 1.3</td>
<td>8.0 ± 0.3</td>
<td>1864 ± 52</td>
<td>95.6</td>
<td>99.2</td>
</tr>
<tr>
<td>E51/SA/1%graphene (EP-1wt%)</td>
<td>Transesterification</td>
<td>48.3</td>
<td>348</td>
<td>22.9 ± 1.7</td>
<td>44</td>
<td>1232 ± 23.5</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>E51/SA (EP)</td>
<td>Transesterification</td>
<td>42.9</td>
<td>345</td>
<td>12.0 ± 0.8</td>
<td>~6</td>
<td>565.9 ± 10.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>EP/MHHPA/PGE (epoxy 3)</td>
<td>Transesterification</td>
<td>75</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>Eu-EP/SA (1:0.5) (R=1:0.5)</td>
<td>Transesterification</td>
<td>53</td>
<td>310</td>
<td>25</td>
<td>8.5</td>
<td>1400</td>
<td>91.8</td>
<td>~100</td>
</tr>
<tr>
<td>Poly(caprolactone) networks</td>
<td>Transesterification</td>
<td>~55</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>>98</td>
<td>>98</td>
</tr>
<tr>
<td>Polyanhydride networks (PAH/PCL PU)</td>
<td>Transesterification</td>
<td>~30</td>
<td>--</td>
<td>4-5</td>
<td>150-200</td>
<td>--</td>
<td>86-87</td>
<td>78-93</td>
</tr>
<tr>
<td>Epoxidized natural rubber/carbon nanodot (ENR/CD-35)</td>
<td>Transesterification</td>
<td>~40</td>
<td>--</td>
<td>17.9</td>
<td>452</td>
<td>1.5</td>
<td>>98</td>
<td>>98</td>
</tr>
<tr>
<td>Thermoset polyurethane</td>
<td>Transcarbamoylation</td>
<td>~41</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>System</td>
<td>Reaction</td>
<td>Tg/°C</td>
<td>ρ/g·cm⁻³</td>
<td>E⁻/kJ·mol⁻¹</td>
<td>E⁺/kJ·mol⁻¹</td>
<td>η/µPa·s</td>
<td>Tg/°C</td>
<td>ρ/g·cm⁻³</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Thermoset polyurethane (PU-4) Transcarbamoylation</td>
<td>~80</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>99.7</td>
<td>97.9</td>
<td>~98</td>
</tr>
<tr>
<td>Thermoset polyurethane (PUU3) Transcarbamoylation</td>
<td>~40</td>
<td>--</td>
<td>~1.1</td>
<td>~520</td>
<td>--</td>
<td>95</td>
<td>95</td>
<td>~98</td>
</tr>
<tr>
<td>Thermoset polyurethane (P1) Transcarbamoylation</td>
<td>~50</td>
<td>--</td>
<td>8.16±0.57</td>
<td>13.04±2.9</td>
<td>~98</td>
<td>>94</td>
<td>>94</td>
<td>>98</td>
</tr>
<tr>
<td>BGPP/FA/BM (DA0.2) Diels-Alder</td>
<td>35</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>88.8</td>
<td>87.5</td>
<td>95.6</td>
</tr>
<tr>
<td>SBS-Fu20/CNTs Diels-Alder</td>
<td>-73, 75</td>
<td>--</td>
<td>15.3-18.5</td>
<td>600~890</td>
<td>Photo</td>
<td>Photo</td>
<td>--</td>
<td>[S12]</td>
</tr>
<tr>
<td>MDS-EPO Disulfide</td>
<td>41.4</td>
<td>268.8</td>
<td>10.9±2.2</td>
<td>0.60±0.17</td>
<td>1990±130</td>
<td>--</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>Polysulfide networks (poly(S-PTMP)-51) Disulfide</td>
<td>36.4</td>
<td>252.9</td>
<td>~5</td>
<td>~15</td>
<td>--</td>
<td>Photo</td>
<td>Photo</td>
<td>--</td>
</tr>
<tr>
<td>Thermoset polyurethane (PU10) Diselenide</td>
<td>57</td>
<td>17</td>
<td>100</td>
<td>--</td>
<td>91</td>
<td>97</td>
<td>~90</td>
<td>[S15]</td>
</tr>
<tr>
<td>PCL networks (PCL-6Indole) Reversible TAD Chemistry</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>99</td>
<td>96-99</td>
<td>~80</td>
</tr>
<tr>
<td>Metallosupramolecular networks (CP2-Ni) Metal–ligand interactions</td>
<td>~50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>99</td>
<td>95</td>
<td>~98</td>
</tr>
</tbody>
</table>

a: Data not given in the reference.
References