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Experimental Section

Materials and Reagents

The YT2 was synthesized according to our previous work. [1] Other chemicals and solvents were 

commercial available for use without further purification. NMR spectra were recorded on a 

Bruker AVANCE 400 MHz spectrometer. High-resolution MALDI spectra were collected with a 

Fourier transform-ion cyclotron resonance mass spectrometer instrument (Varian 7.0TFTICR-

MS). YT1 and YT3 were fully characterized by NMR and mass spectral data. The synthetic 

routs of the three HTMs are outlined in Scheme S1 and the details are depicted below.
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Scheme S1. The synthesis route of YT1, YT2 and YT3.

9,9-bis(4-methoxyphenyl)-N2,N2,N7,N7-tetraphenyl-9H-fluorene-2,7-diamine (YT1)

A mixture of 2,7-dibromo-9,9-bis(4-methoxyphenyl)-9H-fluorene 1 (1mmol) and diphenylamine 

(2.25mmol), and sodium tert-butoxide (360 mg, 3.75 mmol) in toluene was stirred for 30 

minutes under N2 atmosphere to remove oxygen. Then palladium acetate (5% mmol), tri-tert-

butyl phosphine (5 % mmol) was added. And the mixture was stirred overnight at 110 °C until 

the reaction was complete by TLC analysis. After cooling, the reaction was quenched by water, 

and then followed by product extraction with ethyl acetate. The organic layer was dried over 



anhydrous Mg2SO4 and evaporated under vacuum. The collected residue was further purified by 

silica gel column chromatography (hexane/EtOAc, v/v, 3:1) to give YT1 as a white solid (yield 

96%). 1H NMR (400 MHz, CDCl3, δ): 7.48 (d, J = 4.0 Hz, 2H), 7.19 (t, J = 4.0 Hz, 8H), 7.12 (s, 

2H), 7.06 (d, J = 8.0 Hz, 8H), 7.01 (d, J = 8.0 Hz, 4H), 6.96-6.94 (t, J = 4.0 Hz, 4H), 6.70 (d, J = 

8.0 Hz, 4H), 3.76 (s, 6H). 13C NMR (400 MHz, CDCl3, δ): 158.17, 152.84, 147.70, 146.71, 

137.94, 134.54, 129.24, 129.12, 124.16, 124.03, 123.34, 122.62, 120.55, 113.44, 113.37, 55.25.  

HR-MS (ESI) m/z: [M+1]+ calcd for 713.3163; found, 713.3160.

9,9-bis(4-methoxyphenyl)-N2,N2,N7,N7-tetrakis(4-(9-(4-methoxyphenyl)-9H-fluoren-9-

yl)phenyl)-9H-fluorene-2,7-diamine (YT3)

A mixture of compound YT1 (1 mmol) and 9-(4-methoxyphenyl)-9H-fluoren-9-ol 2 (5mmol) 

was dissolved in dichloromethane at room temperature. Then a solution of boron trifluoride 

diethyl ether complex (0.1mL) in dichloromethane was added dropwise to the mixture and stirred 

for 2h at room temperature. Then the reaction was quenched with water and extracted with 

dichloromethane. The organic layer was dried over anhydrous Mg2SO4 and evaporated under 

vacuum. The remaining crude product was purified by chromatography (SiO2, hexane/EtOAc, 

v/v, 2:1) to give YT3 as a light yellow solid (yield 90%). 1H NMR (400 MHz, DMSO-d, δ): 7.87 

(d, J = 4.0 Hz, 8H), 7.57 (t, J = 4.0 Hz, 2H), 7.33-7.37 (m, 16H), 7.23-7.26 (m, 8H), 6.95-6.97 (m, 

16H), 6.90-6.91 (m, 2H), 6.74-6.80 (m, 22H), 6.61 (d, J = 4.0 Hz, 4H), 3.66 (s, 12H), 3.58 (s, 

6H). 13C NMR (400 MHz, DMSO-d, δ): 163.15, 163.04, 157.56, 157.52, 156.26, 156.19, 155.99, 

151.27, 150.91, 150.53, 145.10, 142.82, 142.65, 142.26, 139.27, 134.03, 133.85, 133.80, 132.95, 

132.72, 132.67, 131.20, 128.54, 128.28, 128.21, 126.75, 126.75, 126.64, 125.91, 125.65, 118.93, 

118.84, 118.64, 68.96, 60.18.  HR-MS (ESI): m/z: [M+1]+ calcd for 1793.7341; found, 

1793.7396.



Figure S1. 1 H NMR (CDCl3) spectrum of YT1.

Figure S2. 13C NMR (CDCl3) spectrum of YT1.



Figure S3. HR-MS spectra of  YT1.

Figure S4. 1 H NMR (DMSO-d) spectrum of YT3.



Figure S5. 13C NMR (DMSO-d) spectrum of YT3.
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Figure S6. HR-MS spectra of YT3.



Computational Details

In the simulation, Optimization and single point energy calculations are performed at B3LYP/6-

31G(d) level using Gaussian 09 program basis set for all atoms, without any symmetry 

constraints. 
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Figure S7. Frontier orbitals of YT1, YT2 and YT3.



Figure S8. The cross-section image of the device architecture.

Figure S9. Hysteresis curve of these HTMs in (FAPbI3)0.85(MAPbBr3)0.15-based PSCs.



Figure S10. Hysteresis curve of YT3 and Spiro-OMeTAD in CsPbI2Br-based PSCs.
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Figure S11. Dark J-V curves of the devices with YT1, YT2 and YT3.

Electrochemical Measurements

Electrochemical experiments were performed with a CH Instruments electrochemical 

workstation (model 660A) using a conventional three-electrode electrochemical cell. A glassy 

carbon electrode (diameter 3mm) was used as the working electrode, a platinum wire as the 

counter electrode, a Ag/AgCl as the reference electrode and 0.1 M of 
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tetrabutylammoniunhexafluorophosphate (n-Bu4NPF6) in dichloromethane solution as supporting 

electrolyte. The cyclovoltammetric scan rates were 50 mV/s. Each measurement was calibrated 

with Fc. E1/2 Fc = 0.20 V. EHOMO= −5.1− (E1/2−E1/2 
Fc). 

Fabrication of (FAPbI3)0.85(MAPbBr3)0.15 perovskite solar cells

The fluorine-doped SnO2 (FTO, 15 -square) substrates were etched with zinc powder and HCl  Ω

acid (concentration 4 M) to form the desired electrode pattern. The substrates were cleaned in an 

ultrasonic bath for half an hour in the following order: deionized water, acetone and ethanol. A 

compact layer of TiO2, intended to block the recombination current at the FTO support, was 

prepared on cleaned FTO substrate by spray pyrolysis of solution (0.2M titanium isopropoxide 

and 2M acetylacetone in isoproponal). Afterwards, a layer of mesoporous TiO2 particles were 

spin-coated on the FTO glass with a thickness of 200 nm. The perovskite films were deposited 

from a precursor solution containing FAI (1 M), PbI2 (1.1 M), MABr (0.2 M) and PbBr2 (0.2 M) 

in anhydrous DMF: DMSO=4:1 (v/v). The perovskite solution was spin-coated in a two-step 

program; first at 1000 rpm for 10 s and then at 4000 rpm for 30 s. During the second step, 100 

μL of chlorobenzene were poured on the spinning substrate 15 s prior to the end of the program. 

The substrates were then annealed at 100 °C for 1 h in a nitrogen filled glove box. Here, the YT1, 

YT2, YT3 and Spiro-OMeTAD/chlorobenzene (80 mg/mL) solution was prepared with addition 

of 20 μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL tert-butylpyridine (tBP). As 

a last step 80 nm of gold top electrode were thermally evaporated under high vacuum. Current-

voltage characteristics were measured under 100 mW/cm2 (AM 1.5G illumination) using a 

Newport solar simulator (model 91160) and a Keithley 2400 source/meter. A certified reference 

solar cell (Fraunhofer ISE) was used to calibrate the light source for an intensity of 100 mW/cm2. 

Incident photon-to-current conversion efficiency (IPCE) spectra were recorded using a 



computer-controlled setup consisting of a Xenon light source (Spectral Products ASB-XE-175), 

a monochromator (Spectra Products CM110), and a potentiostat (LabJack U6 DAQ board), 

calibrated by a certified reference solar cell (Fraunhofer ISE). Electron lifetime measurements 

were performed using a white LED (Luxeon Star 1W) as the light source. The photocurrent 

decay was determined by monitoring photocurrent transients by applying a small square-wave 

modulation to the base light intensity. The voltage scan rate was 10mV s-1 and no device 

preconditioning was applied before starting the measurement, such as light soaking or forward 

voltage bias applied for long time. The cells were masked with a black metal mask limiting the 

active area to 0.09 cm2 and reducing the influence of the scattered light. 

Fabrication of CsPbI2Br perovskite solar cells

Glass/ITO substrates (2.5 cm*1.5 cm) were cleaned by sonication in deionized water, detergent, 

deionized water and isopropanol (IPA) and then dried in an oven. Glass/ITO substrates were 

treated under oxygen plasma for 15 min before use. 30 nm SnO2 nanoparticles were spun coated 

onto ITO substrates at 4000 rpm for 30 s. The 10 nm ZnO nanoparticles were spun coated onto 

ITO/SnO2 substrates at 5500 rpm for 30 s, followed by thermal annealing in air at 150°C for 30 

min.  1M PbI2 and 1M CsBr were dissolved in a mixture of DMF and DMSO (1:9 v/v), and 

stirred overnight in a glovebox. The perovskite precursor solution was spun coated onto 

ITO/ETL substrates via a two-step temperature-control procedure at 1500 rpm and 5000 rpm for 

15 s and 30 s, respectively. Subsequently, the substrates were thermally annealed by a two-step 

process at 55°C for 60 s and 240°C for 60 s. Here, the YT1, YT2, YT3 and Spiro-

OMeTAD/chlorobenzene (80 mg/ml) solution was prepared with addition of 20 μL Li-TFSI 

(520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL tert-butylpyridine (tBP). Finally, a 12 nm 

MoO3 and 100 nm silver (Ag) were thermally evaporated under vacuum, respectively. The cells 



were masked with a black metal mask limiting the active area to 0.09 cm2 and reducing the 

influence of the scattered light. Current-voltage characteristics were measured under 100 

mW/cm2 (AM 1.5G illumination) using a Newport solar simulator (model 91160) and a Keithley 

2400 source/meter. A certified reference solar cell (Fraunhofer ISE) was used to calibrate the 

light source for an intensity of 100 mW/cm2. Incident photon-to-current conversion efficiency 

(IPCE) spectra were recorded using a computer-controlled setup consisting of a Xenon light 

source (Spectral Products ASB-XE-175), a monochromator (Spectra Products CM110), and a 

potentiostat (LabJack U6 DAQ board), calibrated by a certified reference solar cell (Fraunhofer 

ISE). Electron lifetime measurements were performed using a white LED (Luxeon Star 1W) as 

the light source. The photocurrent decay was determined by monitoring photocurrent transients 

by applying a small square-wave modulation to the base light intensity. The voltage scan rate 

was 10mV s-1 and no device preconditioning was applied before starting the measurement, such 

as light soaking or forward voltage bias applied for long time. The cells were masked with a 

black metal mask limiting the active area to 0.09 cm2 and reducing the influence of the scattered 

light. 


