Supporting Information

Importance of Terminated Groups in 9,9-bis(4-methoxyphenyl)-substituted Fluorene-based Hole Transport Materials for Highly Efficient Organic-inorganic Hybrid and All-inorganic Perovskite Solar Cells

Dongyang Zhang, #a Tai Wu, #a Peng Xu, a Yangmei Ou, a Anxin Sun, a Huili Ma, b Bo Cui, a Hanwen Sun, a Liming Ding, c,d* Yong Hua a*

a Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650091, Yunnan P. R. China.
b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
c Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China.
d University of Chinese Academy of Sciences, Beijing 100049, China.
Experimental Section

Materials and Reagents

The YT2 was synthesized according to our previous work. Other chemicals and solvents were commercial available for use without further purification. NMR spectra were recorded on a Bruker AVANCE 400 MHz spectrometer. High-resolution MALDI spectra were collected with a Fourier transform-ion cyclotron resonance mass spectrometer instrument (Varian 7.0TFTICR-MS). YT1 and YT3 were fully characterized by NMR and mass spectral data. The synthetic routes of the three HTMs are outlined in Scheme S1 and the details are depicted below.

Scheme S1. The synthesis route of YT1, YT2 and YT3.

9,9-bis(4-methoxyphenyl)-N2,N2,N7,N7-tetraphenyl-9H-fluorene-2,7-diamine (YT1)

A mixture of 2,7-dibromo-9,9-bis(4-methoxyphenyl)-9H-fluorene 1 (1mmol) and diphenylamine (2.25mmol), and sodium tert-butoxide (360 mg, 3.75 mmol) in toluene was stirred for 30 minutes under N2 atmosphere to remove oxygen. Then palladium acetate (5% mmol), tri-tert-butyl phosphine (5 % mmol) was added. And the mixture was stirred overnight at 110 °C until the reaction was complete by TLC analysis. After cooling, the reaction was quenched by water, and then followed by product extraction with ethyl acetate. The organic layer was dried over
anhydrous Mg$_2$SO$_4$ and evaporated under vacuum. The collected residue was further purified by silica gel column chromatography (hexane/EtOAc, v/v, 3:1) to give YT1 as a white solid (yield 96%). 1H NMR (400 MHz, CDCl$_3$, δ): 7.48 (d, J = 4.0 Hz, 2H), 7.19 (t, J = 4.0 Hz, 8H), 7.12 (s, 2H), 7.06 (d, J = 8.0 Hz, 8H), 7.01 (d, J = 8.0 Hz, 4H), 6.96-6.94 (t, J = 4.0 Hz, 4H), 6.70 (d, J = 8.0 Hz, 4H), 3.76 (s, 6H). 13C NMR (400 MHz, CDCl$_3$, δ): 158.17, 152.84, 147.70, 146.71, 137.94, 134.54, 129.24, 129.12, 124.03, 123.34, 122.62, 120.55, 113.44, 113.37, 55.25. HR-MS (ESI) m/z: [M+1]$^+$ calcd for 713.3163; found, 713.3160.

9,9-bis(4-methoxyphenyl)-N$_2$N$_2$N$_7$N$_7$-tetrakis(4-(9-(4-methoxyphenyl)-9H-fluoren-9-yl)phenyl)-9H-fluorene-2,7-diamine (YT3)

A mixture of compound YT1 (1 mmol) and 9-(4-methoxyphenyl)-9H-fluoren-9-ol 2 (5mmol) was dissolved in dichloromethane at room temperature. Then a solution of boron trifluoride diethyl ether complex (0.1mL) in dichloromethane was added dropwise to the mixture and stirred for 2h at room temperature. Then the reaction was quenched with water and extracted with dichloromethane. The organic layer was dried over anhydrous Mg$_2$SO$_4$ and evaporated under vacuum. The remaining crude product was purified by chromatography (SiO$_2$, hexane/EtOAc, v/v, 2:1) to give YT3 as a light yellow solid (yield 90%). 1H NMR (400 MHz, DMSO-d$_6$, δ): 7.87 (d, J = 4.0 Hz, 8H), 7.57 (t, J = 4.0 Hz, 2H), 7.33-7.37 (m, 16H), 7.23-7.26 (m, 8H), 6.95-6.97 (m, 16H), 6.90-6.91 (m, 2H), 6.74-6.80 (m, 22H), 6.61 (d, J = 4.0 Hz, 4H), 3.66 (s, 12H), 3.58 (s, 6H). 13C NMR (400 MHz, DMSO-d$_6$, δ): 163.15, 163.04, 157.56, 157.52, 156.26, 156.19, 155.99, 151.27, 150.91, 150.53, 145.10, 142.82, 142.65, 142.26, 139.27, 134.03, 133.85, 133.80, 132.95, 132.72, 132.67, 131.20, 128.54, 128.28, 128.21, 126.75, 126.75, 126.64, 125.91, 125.65, 118.93, 118.84, 118.64, 68.96, 60.18. HR-MS (ESI): m/z: [M+1]$^+$ calcd for 1793.7341; found, 1793.7396.
Figure S1. 1H NMR (CDCl$_3$) spectrum of YT1.

Figure S2. 13C NMR (CDCl$_3$) spectrum of YT1.
Figure S3. HR-MS spectra of YT1.

Figure S4. 1H NMR (DMSO-d_6) spectrum of YT3.
Figure S5. 13C NMR (DMSO-d_6) spectrum of YT3.

Figure S6. HR-MS spectra of YT3.
Computational Details

In the simulation, Optimization and single point energy calculations are performed at B3LYP/6-31G(d) level using Gaussian 09 program basis set for all atoms, without any symmetry constraints.

<table>
<thead>
<tr>
<th>HTMs</th>
<th>YT1</th>
<th>YT2</th>
<th>YT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUMO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimized structure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S7. Frontier orbitals of YT1, YT2 and YT3.
Figure S8. The cross-section image of the device architecture.

Figure S9. Hysteresis curve of these HTMs in (FAPbI$_3$)$_{0.85}$(MAPbBr$_3$)$_{0.15}$-based PSCs.
Figure S10. Hysteresis curve of YT3 and Spiro-OMeTAD in CsPbI$_2$Br-based PSCs.

Figure S11. Dark J-V curves of the devices with YT1, YT2 and YT3.

Electrochemical Measurements

Electrochemical experiments were performed with a CH Instruments electrochemical workstation (model 660A) using a conventional three-electrode electrochemical cell. A glassy carbon electrode (diameter 3mm) was used as the working electrode, a platinum wire as the counter electrode, a Ag/AgCl as the reference electrode and 0.1 M of
tetrabutylammoniumhexafluorophosphate (n-Bu$_4$NPF$_6$) in dichloromethane solution as supporting electrolyte. The cyclovoltammetric scan rates were 50 mV/s. Each measurement was calibrated with Fc. $E_{1/2\text{Fc}} = 0.20$ V. $E_{\text{HOMO}} = -5.1 - (E_{1/2\text{Fc}} - E_{1/2\text{Fc}})$.

Fabrication of (FAPbI$_3$)$_{0.85}$(MAPbBr$_3$)$_{0.15}$ perovskite solar cells

The fluorine-doped SnO$_2$ (FTO, 15Ω-square) substrates were etched with zinc powder and HCl acid (concentration 4 M) to form the desired electrode pattern. The substrates were cleaned in an ultrasonic bath for half an hour in the following order: deionized water, acetone and ethanol. A compact layer of TiO$_2$, intended to block the recombination current at the FTO support, was prepared on cleaned FTO substrate by spray pyrolysis of solution (0.2M titanium isopropoxide and 2M acetylacetone in isoproponal). Afterwards, a layer of mesoporous TiO$_2$ particles were spin-coated on the FTO glass with a thickness of 200 nm. The perovskite films were deposited from a precursor solution containing FAI (1 M), PbI$_2$ (1.1 M), MABr (0.2 M) and PbBr$_2$ (0.2 M) in anhydrous DMF: DMSO=4:1 (v/v). The perovskite solution was spin-coated in a two-step program; first at 1000 rpm for 10 s and then at 4000 rpm for 30 s. During the second step, 100 μL of chlorobenzene were poured on the spinning substrate 15 s prior to the end of the program. The substrates were then annealed at 100 °C for 1 h in a nitrogen filled glove box. Here, the YT1, YT2, YT3 and Spiro-OMeTAD/chlorobenzene (80 mg/mL) solution was prepared with addition of 20 μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL tert-butylpyridine (tBP). As a last step 80 nm of gold top electrode were thermally evaporated under high vacuum. Current-voltage characteristics were measured under 100 mW/cm2 (AM 1.5G illumination) using a Newport solar simulator (model 91160) and a Keithley 2400 source/meter. A certified reference solar cell (Fraunhofer ISE) was used to calibrate the light source for an intensity of 100 mW/cm2. Incident photon-to-current conversion efficiency (IPCE) spectra were recorded using a
computer-controlled setup consisting of a Xenon light source (Spectral Products ASB-XE-175), a monochromator (Spectra Products CM110), and a potentiostat (LabJack U6 DAQ board), calibrated by a certified reference solar cell (Fraunhofer ISE). Electron lifetime measurements were performed using a white LED (Luxeon Star 1W) as the light source. The photocurrent decay was determined by monitoring photocurrent transients by applying a small square-wave modulation to the base light intensity. The voltage scan rate was 10mV s\(^{-1}\) and no device preconditioning was applied before starting the measurement, such as light soaking or forward voltage bias applied for long time. The cells were masked with a black metal mask limiting the active area to 0.09 cm\(^2\) and reducing the influence of the scattered light.

Fabrication of CsPbI\(_2\)Br perovskite solar cells

Glass/ITO substrates (2.5 cm*1.5 cm) were cleaned by sonication in deionized water, detergent, deionized water and isopropanol (IPA) and then dried in an oven. Glass/ITO substrates were treated under oxygen plasma for 15 min before use. 30 nm SnO\(_2\) nanoparticles were spun coated onto ITO substrates at 4000 rpm for 30 s. The 10 nm ZnO nanoparticles were spun coated onto ITO/SnO\(_2\) substrates at 5500 rpm for 30 s, followed by thermal annealing in air at 150°C for 30 min. 1M PbI\(_2\) and 1M CsBr were dissolved in a mixture of DMF and DMSO (1:9 v/v), and stirred overnight in a glovebox. The perovskite precursor solution was spun coated onto ITO/ETL substrates via a two-step temperature-control procedure at 1500 rpm and 5000 rpm for 15 s and 30 s, respectively. Subsequently, the substrates were thermally annealed by a two-step process at 55°C for 60 s and 240°C for 60 s. Here, the YT1, YT2, YT3 and Spiro-OMeTAD/chlorobenzene (80 mg/ml) solution was prepared with addition of 20 μL Li-TFSI (520 mg Li-TFSI in 1 mL acetonitrile), and 30 μL tert-butylpyridine (tBP). Finally, a 12 nm MoO\(_3\) and 100 nm silver (Ag) were thermally evaporated under vacuum, respectively. The cells
were masked with a black metal mask limiting the active area to 0.09 cm² and reducing the influence of the scattered light. Current-voltage characteristics were measured under 100 mW/cm² (AM 1.5G illumination) using a Newport solar simulator (model 91160) and a Keithley 2400 source/meter. A certified reference solar cell (Fraunhofer ISE) was used to calibrate the light source for an intensity of 100 mW/cm². Incident photon-to-current conversion efficiency (IPCE) spectra were recorded using a computer-controlled setup consisting of a Xenon light source (Spectral Products ASB-XE-175), a monochromator (Spectra Products CM110), and a potentiostat (LabJack U6 DAQ board), calibrated by a certified reference solar cell (Fraunhofer ISE). Electron lifetime measurements were performed using a white LED (Luxeon Star 1W) as the light source. The photocurrent decay was determined by monitoring photocurrent transients by applying a small square-wave modulation to the base light intensity. The voltage scan rate was 10mV s⁻¹ and no device preconditioning was applied before starting the measurement, such as light soaking or forward voltage bias applied for long time. The cells were masked with a black metal mask limiting the active area to 0.09 cm² and reducing the influence of the scattered light.