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Figure S1. X-ray diffraction patterns of the AZ-NLs with Wzno varying from 50 to 14 cycles.
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Figure S2. X-ray diffraction patterns of the AZ-NLs with Wzno varying from 12 to 6 cycles,

together with that of Al2O3 single film for comparison.
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Figure S3. The ZnO sublayer width in AZ-NLs as a function of Wzno, while Wanos is fixed at
10 cycles. A growth rate of 1.7A per cycle is obtained for ZnO from the slope of the fitted

straight line.
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Figure S4. High resolution XPS profile for the Al 2p core level of the Al2O3 thin film by ALD.

O 1s

Intensity (a.u.)

528 531 534
Binding Energy (eV)

Figure S5. High resolution XPS profile for the O 1s core level of the Al2O3 thin film by ALD.
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Figure S6. Height measurement performed for 1000 cycles of Al2Os thin-layer, where a steep
and clear step was made at the edge of the Al2O3 thin-layer by applying a mask to the local area

of the substrate during deposition. (up) 2x20 pm*> AFM image of the prefabricated step and

(down) the corresponding height line-scan across the step.
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Figure S7. AFM images of surface morphology for (a) 200nm AZ-NLs and (b) 600nm AZ-NLs,

with a root-mean-square (RMS) roughness of 0.92 nm and 1.03 nm, respectively.

S7



t —O— Permittivity
—©— Dissipation Factor

Permittivity
) ¥
o
=
tion Factor

issipa

o
=)
D.

10? 10° 10* 10° 10°
Frequency (Hz)

Figure S8. Frequency dependences of permittivity and dissipation factor measured at room

temperature for Al2O3 single film by ALD.
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Figure S9. (a) The schematic structure of AZ-NLs based capacitors. (b) Polarization of the AZ-

NLs under external field.
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Figure S10. Dielectric loss spectra for (a) 10a-40z, (b) 10a-20z, (c) 10a-14z, (d) 10a-10z, (e)
10a-8z and (f) 10a-6z AZ-NLs measured at different temperatures from 77 to 380K.
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Figure S11. The derivative of absorption to photon energy do/dE profiles of the AZ-NLs, with

Wzno decreasing from 40 to 6 cycles, where the peak on each curve indicates the optical bandgap.
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Figure S12. Dielectric performances of (a) 14a-14z, (b) 8a-14z, (c) 6a-14z, (d) 4a-14z, (e) 2a-
14z and (f) la-14z AZ-NLs, where (1) and (2) are frequency spectra of permittivity and
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dissipation factor measured at different temperatures ranging from 77 to 380K, (3) and (4)
represent temperature-dependent permittivity and dissipation of selected frequencies. The

legends for the frequency and the temperature spectra can be seen in (f1) and (f3), respectively.
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Figure S13. Dielectric loss spectra for (a) 14a-14z, (b) 8a-14z, (c) 6a-14z, (d) 4a-14z, (e) 2a-14z
and (f) la-14z AZ-NLs measured at different temperatures from 77 to 380K.
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Figure S14. P—E loops for 4a-14z AZ-NLs during the fatigue process up to 1x10° cycles at 2.0

MV/cm.
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