Supporting Information

High Ion Mobility and Capacity of Monolayer GaS as a Promising Anode Battery Material

Xiuying Zhang1, Chen Yang1,2, Yuanyuan Pan1, Mouyi Weng3, Linqiang Xu1, Shiqi Liu1, Jie Yang1, Jiahuan Yan1, Jingzhen Li1, Bowen Shi1, Jinbo Yang4,5, Jiaxin Zheng3*, Feng Pan3*, Jing Lu1,4,5*

1State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
2Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
3School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China
4Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China
5Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P. R. China

518055, P. R. China

Corresponding author: jinglu@pku.edu.cn, panfeng@pkusz.edu.cn, zhengjx@pkusz.edu.cn

Figure S1: Top and side view of atomic structure of $M_{0.031}\text{GaS}$ (a), $M_{0.056}\text{GaS}$ (b), $M_{0.125}\text{GaS}$ (c), and $M_{0.5}\text{GaS}$ (d) ($M = \text{Li, Na, K, Al}$).
Figure S2: Top and side view of atomic structure of Li$_1$GaS (a), Li$_{1.5}$GaS (b), Li$_2$GaS (c), and Li$_{2.5}$GaS (d).

Figure S3: ELF map of the (100) face of ML Li$_2$GaS (a), Li$_{2.5}$GaS (b).
Figure S4: ELF map of the (100) face of ML Na$_{0.125}$GaS (a), Na$_{0.5}$GaS (b).

Figure S5: ELF map of the (100) face of ML K$_{0.125}$GaS (a), K$_{0.5}$GaS (b) and K$_{1}$GaS (c).

Figure S6: ELF map of the (100) face of ML Al$_{0.125}$GaS (a), Al$_{0.5}$GaS (b).