Porous oxygen vacancy-rich V_2O_5 nanosheets as superior semiconducting supports of nonprecious metal nanoparticles for efficient on-demand H_2 evolution from ammonia borane under visible light irradiation

Jin Song, Xiaojun Gu,* Yaduo Cao and Hao Zhang Inner Mongolia Key Laboratory of Coal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China E-mail: xiaojun.gu@yahoo.com

Calculation method

The TOF value was calculated from the following equation.

$$\text{TOF} = \frac{3n_{\text{NH3BH3}}}{n_{\text{metal}}t}$$

In the equation, n_{metal} is the total molar amount of metal species in the catalyst, t is reaction time, and n_{NH3BH3} is the total molar amount of NH_3BH_3 in the catalytic reaction.

Fig. S1 H₂-TPR profile of pristine V_2O_5 in the range of 50–900 °C.

Fig. S2 PXRD patterns of (a) V_2O_5 , (b) V_2O_5 -250, (c) V_2O_5 -300 and (d) V_2O_5 -350.

Fig. S3 PXRD patterns of (a) Co/V_2O_5 , (b) Co/V_2O_5 -250, (c) Co/V_2O_5 -300 and (d) Co/V_2O_5 -350.

Fig. S4 PXRD patterns of (a) Ni/V_2O_5 , (b) Ni/V_2O_5 -250, (c) Ni/V_2O_5 -300 and (d) Ni/V_2O_5 -350.

Fig. S5 XPS patterns of V2p for (a) V_2O_5 , (b) V_2O_5 -250, (c) V_2O_5 -300 and (d) V_2O_5 -350.

Fig. S6 XPS patterns of Co 2p in Co/V₂O₅-300 before and after Ar etching.

Fig. S7 XPS patterns of O 1s in V_2O_5 -300 and Co/V_2O_5 -300.

Fig. S8 XPS patterns of Co 2p in Co/V₂O₅ and Co/V₂O₅-300.

Fig. S9 TEM images of V_2O_5 -250 with different magnifications.

Fig. S10 TEM images of V_2O_5 -300 with different magnifications.

Fig. S11 TEM images of V_2O_5 -350 with different magnifications.

Fig. S12 TEM images of Co/V_2O_5 -300.

Fig. S13 HAADF-STEM images of (a) Co/V_2O_5 -300 and the corresponding elemental maps of Co/V_2O_5 -300 for (b) Co, (c) V and (d) O.

Fig. S14 EDX pattern of Co/V₂O₅.

Fig. S15 EDX pattern of Co/V_2O_5 -300.

Fig. S16 TEM image of Co/V_2O_5 -300.

Fig. S17 TEM image of Co/V_2O_5 -350.

Fig. S18 N_2 adsorption-desorption isotherms of V_2O_5 at 77K.

Fig. S19 N_2 adsorption-desorption isotherms of $V_2 O_5\mathchar`-300$ at 77K.

Fig. S20 N_2 adsorption-desorption isotherms of Co/V₂O₅ at 77 K.

Fig. S21 N_2 adsorption-desorption isotherms of Co/V₂O₅-300 at 77K.

Fig. S22 UV-vis spectra of four Co-based catalysts.

Fig. S23 UV-vis spectra of four Ni-based catalysts.

Fig. S24 UV-vis spectra and the plots of the $(Ahv)^{1/2}$ vs photon energy of V_2O_5 and Co/ $V_2O_5.$

Fig. S25 UV-vis spectra and the plots of the $(Ahv)^{1/2}$ vs photon energy of V₂O₅-250 and Co/ V₂O₅-250.

Fig. S26 UV-vis spectra and the plots of the $(Ahv)^{1/2}$ vs photon energy of V₂O₅-300 and Co/ V₂O₅-300.

Fig. S27 UV-vis spectra and the plots of the $(Ahv)^{1/2}$ vs photon energy of V_2O_5 and Co/ V_2O_5 .

Fig. S28 Supercell models proposed for (a) pristine V_2O_5 , (b) V_2O_5 with double vanadyl bond oxygen vacancy, (c) V_2O_5 with bridging oxygen vacancy and (d) triple bonding oxygen vacancy.

Fig. S29 Total energy and energetic convergence data of all calculated models: (a) pristine V_2O_5 , (b) V_2O_5 with double vanadyl bond oxygen vacancy, (c) V_2O_5 with bridging oxygen vacancy and (d) triple bonding oxygen vacancy.

Fig. S30 Plots of time versus volume of H_2 evolution from NH_3BH_3 aqueous solution over V_2O_5 .

Fig. S31 Plots of time versus volume of H_2 evolution from NH_3BH_3 in the aqueous solution over four Ni-based catalysts under visible light irradiation and in the dark and (b) the total TOF values.

Fig. S32 Plots of time versus volume of H_2 evolution from NH_3BH_3 in H_2O or D_2O over Co/V_2O_5 -250 under visible light irradiation.

Fig. S33 Plots of time versus volume of H_2 evolution from NH_3BH_3 in H_2O or D_2O over Co/V_2O_5 -350 under visible light irradiation.

Fig. S34 Time versus volume of H_2 evolution from NH_3BH_3 in the alkaline aqueous solution over Co/V_2O_5 without scavenger or in the presence of 2-propanol, $K_2Cr_2O_7$ and KI under visible light irradiation.

Fig. S35 Time versus volume of H_2 evolution from NH_3BH_3 in the alkaline aqueous solution over Co/V_2O_5 -250 without scavenger or in the presence of 2-propanol, $K_2Cr_2O_7$ and KI under visible light irradiation.

Fig. S36 Time versus volume of H_2 evolution from NH_3BH_3 in the alkaline aqueous solution over Co/V_2O_5 -350 without scavenger or in the presence of 2-propanol, $K_2Cr_2O_7$ and KI under visible light irradiation.