Thermally-Driven Mesopore Formation and Oxygen Release in Delithiated NCA Cathode Particles

Münir M. Beslia,b, Alpesh Khushalchand Shuklac, Chenxi Weid, Michael Metzgera, Judith Alvaradoe, Julian Boella, Dennis Nordlundd, Gerhard Schneiderb,f, Sondra Hellstroma, Christina Johnstona, Jake Christensena, Marca M. Doeffa,*, Yijin Liud,*, Saravanan Kuppana,*

aRobert Bosch LLC, Research and Technology Center, Sunnyvale, California 94085, United States
bDept. of Mech. Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
cNational Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
dStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
eLawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, University of California, Berkeley, California 94720, United States
fMaterials Research Institute, Aalen University, Aalen 73430, Germany

*Correspondence and requests for materials should be addressed to M.D. (mmdoeff@lbl.gov), Y.L. (liuyijin@slac.stanford.edu), and S.K. (saravanan.kuppan@us.bosch.com)
Figure S1: (a) Superimposed soft XAS $L_{3,\text{high}}$ and $L_{3,\text{low}}$ peaks for various cathode active materials of different Ni content. Ni content correlates with $L_{3,\text{high}}$ peak intensity. (b) Correlation of $L_{3,\text{high}}/L_{3,\text{low}}$ peak ratio with Ni oxidation state.
Figure S2: (a-d) Heat-treated Li$_{0.3}$NCA particles of various sizes showing mesopores on the surface. Independent of particle size, mesopores are homogeneously distributed on the surface of the particles.
Figure S3: (a-c) Cross-sectional SEM images for four different particles after focused ion beam milling. Cross-sections of particles also indicate a homogenous distribution of mesopores. (d-f) High magnification of cross-sectional images corresponding to the cross-sectional images (a-c). High magnifications show how mesopores appear along intragranular cracks (red circles) and throughout the entire particle.
Figure S4: SEM images of the surface of four individual delithiated NCA particle heated to (a) 150 °C, (b) 250 °C, (c) 350 °C, and (d) 450 °C. No mesopores are observed on particles that were heated to 150 or 250 °C. Evolution of mesopores seem to start at temperatures above 300 °C. (d) Mesopores seem to appear along intragranular cracks (red circles).
Video S1: FIB-SEM milling for a delithiated NCA particle.
https://drive.google.com/open?id=19p0T8S6olhVJ10SBVdG9Jc6xfV2qeU-d

Video S2: FIB-SEM milling for a delithiated and heat-treated NCA particle.
https://drive.google.com/open?id=1qvTCIFQ6VG5DJDPrHSb1tH01axGldaDe
Figure S5: Cross-sectional SEM images for two different particles after focused ion beam milling. (a) Cross-sectional area for a delithiated NCA particle. (b) High magnification of the cross-sectional image shown in (a). (c) Cross-sectional area for a delithiated and heat-treated NCA particle. (d) High magnification of the cross-sectional image shown in (c).