Design of Novel TiO₂-SiO₂ Core-Shell Helical Nanostructured Anti-

Reflective Coatings on Cu(In,Ga)Se₂ Solar Cells with Enhanced Power

Conversion Efficiency

Chia-Wei Chen^{a,b}, Hung-Wei Tsai^{a,b}, Yi-Chung Wang^{a,b}, Teng-Yu Su^{a,b}, Chen-Hua Yang^{a,b}, Wei-Sheng Lin^{a,b}, Zhan-Hong Lin^{c,d,e}, Jer-Shing Huang^{c,d,e} and Yu-Lun Chueh^{*a,b}

^a Department of Materials Science and Engineering, and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.

^b Department of Physics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.

^c Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.

^d Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC.

^e Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC.

Table S1 The atomic concentration ratio of Ti 2p, Si 2p and O 1s, and the stoichiometry of the core and shell material.

Atomic Concentration Ratio						
Ti 2p	Si 2p	O 1s	Ti:O	Si:O		
0.11	0.19	0.7	1 : 2.29	1:2.31		

	ТСО	With 150 nm	With 150 nm $TiO_2 + 3$ nm SiO_2
		1102	5102
Integral Area	104.64	72.94	71.80

Table S2 The integral area under the reflectance spectrum of TCO, with TiO_2 and with TiO_2 -SiO₂ nanostructure.

Fig. S1 (a) The side view (xy plane) of the overall construction of FDTD simulation, and the geometric parameters of (b) devices and (c) the TiO_2 -SiO₂ core-shell nanostructure.

Fig. S2 (a) The side view (xy plane) of the overall construction of FDTD simulation and (b) the geometric parameters of the device with helical TiO₂ nanostructure. (c) The J_{SC} enhancement of the device with various thicknesses of helical TiO₂ nanostructure. (d) The side view (xy plane) of the overall construction of FDTD simulation and (e) the geometric parameters of the device with rod TiO₂ nanostructure. (f) The J_{SC} enhancement of the device with various thicknesses of helical TiO₂ nanostructure.

Figure S3 XPS spectra of (a) Ti 2p, (b) Si 2p and (c) O 1s.

Figure S4 The schematic diagram of (a) the TCO, (b) TiO_2 deposited on the TCO and (c) TiO_2 -SiO₂ deposited on the TCO for UV-Vis measurements.

Figure S5 Reflectance enhancement spectra of the addition of (a) TiO_2 and (b) TiO_2 -SiO₂ nanostructure.