Fig. S1. XRD patterns of ZIF-8 and ZIF-8@ZIF-67.

Fig. S2. SEM images of (a) ZIF-8 and (b) ZIF-8@ZIF-67.

Fig. S3. (a), (b) XRD patterns, (c), (d) SEM and (e), (f) TEM images of ZnSe-NC and CoSe$_2$-NC.

Fig. S4. (a) SEM image, (b) TEM image, (c) XRD pattern and (d) HRTEM image of the mesoporous carbon polyhedron after etching.

Fig. S5. XRD patterns of (a) the ZIF-8@ZIF-67 processed in Ar atmosphere and (b) after subsequent selenization.

Fig. S6. TGA profiles of (a) ZnSe-NC and (b) CoSe$_2$-NC.

Fig. S7. Nitrogen adsorption/desorption isotherm of the ZIF-8@ZIF-67. The inset curve shows the corresponding BJH pore size distribution.

Fig. S8. Typical CV curves of the (a) ZnSe-NC and (b) CoSe$_2$-NC at a scan rate of 0.2 mV s$^{-1}$ within 0.005-3.0 V for LIBs.

Fig. S9. The combined third cycle CV curves of ZnSe-NC, CoSe$_2$-NC and ZnSe-NC@CoSe$_2$-NC for LIBs.

Fig. S10. Discharge-charge curves for the initial five cycles of (a) ZnSe-NC and (b) CoSe$_2$-NC at a current density of 0.2 A g$^{-1}$ for LIBs.

Fig. S11. (a) Cycling and (b) rate performance of the mesoporous carbon polyhedron obtained by etching of the ZnSe-NC@CoSe$_2$-NC.

Fig. S12. SEM images of the ZnSe-NC@CoSe$_2$-NC (a) after 600 discharge and (b) charge cycles. (c), (d) TEM images of ZnSe-NC@CoSe$_2$-NC after 600 cycles.
Fig. S13. The long-term cycling performance of the ZnSe-NC@CoSe₂-NC anode in another LIBs at a current density of 0.2 A g⁻¹.

Fig. S14. Non-proportional relation between the square root of scan rate and peak current for LIBs.

Fig. S15. Equivalent circuit used for fitting the experimental data of the ZnSe-NC@CoSe₂-NC electrode.

Fig. S16. GITT curves of (a) ZnSe-NC and (b) CoSe₂-NC. D_{Li^+} of (c) ZnSe-NC and (d) CoSe₂-NC.

Fig. S17. The combined third cycle CV curves of ZnSe-NC, CoSe₂-NC and ZnSe-NC@CoSe₂-NC for SIBs.

Fig. S18. Ex-situ TEM/HRTEM images and corresponding SAED patterns of the ZnSe-NC@CoSe₂-NC at different discharge-charge stages in SIBs. (a) 100th discharge to 0.7 V, (b) 100th fully discharge, (c) 100th charge to 1.4 V, (d), (e) 100th fully charge.

Fig. S19. Ex-situ EDX spectrum of the ZnSe-NC@CoSe₂-NC electrode collected at various points in SIBs: (a) after first discharging to 0.7 V, (b) after first discharging to 0.005 V, (c) after first charging to 1.4 V, (d) after first charging to 3.0 V.

Fig. S20. (a) Cycling performance and (b) rate performance of ZnSe-NC, CoSe₂-NC and ZnSe-NC@CoSe₂-NC for SIBs.

Fig. S21. Kinetics analysis of the electrochemical behavior of the ZnSe-NC@CoSe₂-NC nanocomposite for SIBs. (a) CV curves of the ZnSe-NC@CoSe₂-NC at various sweep rates. (b) Plots (b-values) of log (scan rate) versus log (peak current) at different oxidation and reduction state. (c) Specifically b value at different oxidation and reduction state. (d) Ratio of the capacitive-controlled charge contribution (shaded area) to the total current at a scan rate of 0.4 mV s⁻¹. (e) Ratio of capacitive contribution in
ZnSe-NC@CoSe₂-Nd at different scan rates. (f) Nyquist plots before and after 50 cycles of the ZnSe-NC@CoSe₂-Nd.

Fig. S22. Non-proportional relation between the square root of scan rate and peak current for SIBs.

Table S1. Fitted electrochemical impedance parameters of ZnSe-NC, CoSe₂-Nd and ZnSe-NC@CoSe₂-Nd for SIBs.
Fig. S1.

![X-ray diffraction patterns of ZIF-8@ZIF-67 and ZIF-8.](image)

Fig. S2.

![Scanning electron microscopy images of ZIF-8@ZIF-67 and ZIF-8.](image)
Fig. S3.
Fig. S4.

Fig. S5.
When the ZnSe-NC@CoSe$_2$-NC nanocomposite was heated at the temperature range of 25 to 800 °C, the phases of the components in the composite were transformed according to the following reactions:

$$\text{ZnSe (s) + O}_2 (g) \rightarrow \text{ZnO (s) + SeO}_2 (g) \quad (1)$$

$$3\text{CoSe}_2 (s) + 8\text{O}_2 (g) \rightarrow \text{Co}_3\text{O}_4 (s) + 6\text{SeO}_2 (g) \quad (2)$$

$$\text{C (s) + O}_2 (g) \rightarrow \text{CO}_2 (g) \quad (3)$$

In the ZnSe-NC@CoSe$_2$-NC nanocomposite, the mass ratios of ZnSe, CoSe$_2$ and N-doped carbon can be denoted as x, y and z, respectively and the addition of x, y and z value equals 100%. As we know, the ZnSe-NC@CoSe$_2$-NC was obtained by the selenization of ZIF-8@ZIF-67 polyhedrons. So, the N-doped carbon in the ZnSe-NC@CoSe$_2$-NC is from the ZIF-8 and ZIF-67. In order to get x, y and z value, besides the TGA curve of ZnSe-NC@CoSe$_2$-NC, the TGA curves of ZnSe-NC and CoSe$_2$-NC were also obtained. Based on the reaction (1) and the corresponding TGA of ZnSe-NC in Fig. S6a, the theoretical loss ratio of ZnSe is (100-81/144) % = 43.8% and the ratio of ZnSe to N-doped carbon is 78.13%/21.87%. Based on the reaction (2) and the corresponding TGA of CoSe$_2$-NC in Fig. S6b, the theoretical loss ratio of CoSe$_2$ is [100-240.79/(216.85 X 3)] % = 62.9% and the ratio of CoSe$_2$ to N-doped carbon is 73.49%/26.51%. According to above analysis and the data in Fig. 3b, we can get the three equations of x, y and z.
\[x + y + z = 100\% , \]

\[43.8\%x + 62.9\%y + z = 58.11\% , \]

\[(21.87\%/78.13\%)x + (26.51\%/73.49\%)y = z \]

As a result, the content of ZnSe, CoSe\(_2\), N-doped carbon is 68.8\%, 8.8\% and 22.4\%, respectively.

Fig. S7.
Fig. S8.

(a)

(b)

Fig. S9.
Fig. S10.

(a) Potential vs. Li/Li$^+$ (V) vs. Capacity (mAh g$^{-1}$)

(b) Potential vs. Li/Li$^+$ (V) vs. Capacity (mAh g$^{-1}$)

Fig. S11

(a) Specific capacity (mAh g$^{-1}$) vs. Cycle number

(b) Specific capacity (mAh g$^{-1}$) vs. Cycle number
Fig. S13.

![Graph showing specific capacity and coulombic efficiency over cycle number.](Fig_S13)

Current density: 0.2 A g⁻¹

Fig. S14.

![Graph showing peak current vs. square root of voltage gradient.](Fig_S14)

Fig. S15.

![Diagram of equivalent circuit.](Fig_S15)
Fig. S16.

(a) Potential vs. Li/Li⁺ (V) vs. Time (min) for ZnSe-NC and CoSe₂-NC.
(b) Potential vs. Li/Li⁺ (V) vs. Time (min) for CoSe₂-NC.

(c) Log(D_x/cm² s⁻¹) vs. Voltage (V) for ZnSe-NC and CoSe₂-NC.
(d) Log(D_x/cm² s⁻¹) vs. Voltage (V) for CoSe₂-NC.

Fig. S17.

Cyclic voltammograms for ZnSe-NC, ZnSe-NC@CoSe₂-NC, and CoSe₂-NC.
Fig. S18.
Fig. S19.

<table>
<thead>
<tr>
<th>Element</th>
<th>Na</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic %</td>
<td>4.71</td>
<td>3.41</td>
</tr>
</tbody>
</table>

(b)
<table>
<thead>
<tr>
<th>Element</th>
<th>Na</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic %</td>
<td>12.95</td>
<td>7.03</td>
</tr>
</tbody>
</table>

(c)
<table>
<thead>
<tr>
<th>Element</th>
<th>Na</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic %</td>
<td>8.84</td>
<td>4.29</td>
</tr>
</tbody>
</table>

(d)
<table>
<thead>
<tr>
<th>Element</th>
<th>Na</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic %</td>
<td>0.70</td>
<td>8.84</td>
</tr>
</tbody>
</table>

Fig. S20.

![Graphs showing cyclic voltammetry profiles for different materials]
Fig. S21.

Table S1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>State</th>
<th>R_ct (Ω)</th>
<th>R_ct (Ω)</th>
<th>CPE1 (μMΩ)</th>
<th>CPE2 (mMΩ)</th>
<th>Z_∞ (mMΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnSe-NC @CoSe$_2$-NC</td>
<td>fresh</td>
<td>12</td>
<td>197</td>
<td>15.2</td>
<td>11</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>after test</td>
<td>11</td>
<td>157</td>
<td>21.5</td>
<td>9.9</td>
<td>14.4</td>
</tr>
</tbody>
</table>

peaks:

<table>
<thead>
<tr>
<th>Peak</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.77</td>
<td>0.77</td>
<td>0.67</td>
<td>0.64</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Fig. S22.