Supporting Information

Two-dimensional FeS₂- encapsulated Au: A quasi-epitaxial heterojunction for synergistic catalytic activity under photoelectrocatalytic water reduction

Indranil Mondal, Song Yi Moon, Hyunhwa Lee, Heeyoung Kim and Jeong Young Park*

Characterization

To investigate the crystalline phase of the different nickel species, multipurpose attachment Xray diffraction (XRD; SmartLab, RIGAKU) was used. The XRD measurements were taken at a 20 scan range of 10–90°, scan speed of 2.4°/min, and step size of 0.01 Å using CuK_a radiation to identify the phases. The exterior morphology was inspected using a Magellan 400 scanning electron microscope (SEM). To investigate the morphological characteristics, including the phase, transmission electron microscopy (TEM) was carried out using field emission transmission electron microscopy (FE-TEM; Tecnai TF30 ST). The TEM samples were prepared by drop casting the acetone suspension of each respective catalyst on a 300-mesh copper grid. X-ray photoelectron spectroscopy (XPS) was carried out using a Thermo VG Scientific Sigma Probe system equipped with an Al-K α X-ray source (1486.3 eV) with an energy resolution of 0.47 eV full width at half maximum under ultrahigh vacuum conditions of 10^{-10} Torr. An ultraviolet–visible–near-infrared (UV–Vis–NIR) spectrometer (Shimadzu, UV3600) was used to characterize the optical properties of the FeS₂-deposited quartz film. Atomic force microscopy (AFM) analysis was performed using an Agilent 5500 model using a Si tip, which worked at a resonant frequency of 331 kHz and 42 N/m force constant.

Fig. S1. Non-contact mode AFM topography and height profiles extracted from line scanning at different positions of the sheet-like FeS₂ structure prepared using 2.5 mmol of S^{2–} dispersed on a Si substrate. The inset shows the phase imaging of the FeS₂, which shows the different chemical nature of the FeS₂ compared with that of the Si substrate. From the height profile, the typical height of the FeS₂ nanostructure is 3–4 nm. The scale bar represents 2 μ m.

Fig. S2 (a) Top and (b) side views of the FS2.5 nanosheets deposited on *p*-type Si.

Fig. S3 (a) UV-Vis diffuse reflection spectroscopy of the different FeS_2 catalysts measured with the catalysts deposited on a quartz slide. (b) Estimated band gap of the FeS_2 catalysts using the Tauc plot.

Fig. S4 TEM images of the different Au-FeS₂ heterostructures synthesized with (a) 0.5 mmol of S^{2-} (AFS0.5), (b) 1.5 mmol of S^{2-} (AFS1.5), and (c) 2.5 mmol of S^{2-} (AFS2.5). Inset shows the selected area of the HAADF-STEM images with the corresponding nanostructures; size distribution curves of the Au nanoparticles in the Au-FeS₂ heterostructures synthesized using (d) 0.5 mmol of S^{2-} (AFS0.5), (e) 1.5 mmol of S^{2-} (AFS1.5), and (f) 2.5 mmol of S^{2-} (AFS2.5).

Fig. S5 Powder XRD pattern of the Au-FeS₂ heterojunction (AFS1.5).

Fig. S6 Elemental mapping images of the Au, Fe, and S in the selected area HADDF-STEM image of AFS1.5.

Fig. S7 (a) HRTEM of the Au-FeS₂ prepared using 2.5 mmol of S^{2-} (AFS2.5). The TEM was collected where FeS₂ is very thin on the Au. (b) Simulated HRTEM obtained from the selected area (red box in (a)) of the HRTEM shows the characteristic plane of pyrite FeS₂ and Si. (c) FFT pattern collected from the displayed HRTEM shows the epitaxial relationship between the Au and the FeS₂.

Fig. S8 Fe 2p XPS profiles of (a) FeS₂ (FS1.5) and (c) Au-FeS₂ (AFS1.5) where Fe is predominantly present as Fe^{2+} (red and blue curves) in the pyrite FeS₂, which is coordinated to disulfide. The Fe²⁺ peak in the Fe 2p_{3/2} region did not show any shift before or after the heterojunction formation. S 2p XPS profiles of (b) FeS₂ (FS1.5) and (d) Au-FeS₂ (AFS1.5) showing the intrinsic bulk-like (red curves) outer surface (green curves) disulfides with the presence of satellite peaks (blue curves) and surface sulfates (SO4²⁻).

Fig. S9 Typical I–V curves for the different photocathodes at the specified experimental conditions.

Fig. S10 Four consecutive CV scans of the Au-FeS₂(AFS1.5)/Si photoelectrode indicate the reproducibility of the current density value versus potential.

Fig. S11 TEM image of the Au-deposited FeS₂. The Au precursor was injected 15 min after the formation of the FeS₂. The FeS₂ was prepared using the procedure described in the experimental section using a 2.5 mmol concentration of S^{2-} .

Fig. S12 Temporal plot for the quantitative yield of H₂ and O₂ gases. The calculated faradaic efficiency for the AFS1.5/Si electrode is 95.3%. A slight deviation from 100% faradaic efficiency might be caused by dissolved oxygen participating in the reverse reaction and inevitable gas leaks from the experimental apparatus. The faradaic efficiency was measured using a sealed three-electrode electrochemical reactor in presence of a 0.5 M H₂SO₄ solution. The reactor was first purged and backfilled with ultrapure argon (5 kPa). The evolved gases were analyzed using an online gas chromatography system (DS Science with a thermal conductivity detector, MS-5A column, and argon as the carrier gas) The hydrogen generation yield was measured by auto-sampling every 15 minutes. The faradaic efficiency was determined using the equation

faradaic efficiency (%) = $[n_{H2} \text{ (experimental)}/n_{H2} \text{ (theoretical)}] \times 100.$

Fig. S13 TEM images of the Au-FeS₂ heterostructures (AFS1.5) collected after different annealing times. The UV-Vis spectra showed a change in the plasmonic properties of the Au after different annealing times.

Fig. S14 IPCE plot for the different Si/Au photocathodes measured at the chronoamperometric condition of 0 V.

Fig. S15 (a) Equivalent circuit considered for fitting the Nyquist plot. (b) EIS Nyquist plot of the Si/Au-FeS₂ (AFS1.5) photocathode in the dark and with light.

Fig. S16 (a) Stability of the optimized FeS_2 and $Au-FeS_2$ catalysts measured at 0.08 and 0.22 V, respectively, under illumination. TEM images of the (b) FeS_2 (FS2.5) and (c) Au-FeS_2 (AFS1.5) catalysts collected after the stability test.

Fig. S17 Full scan survey and Pt 4f XPS profile of the Au-FeS₂ catalyst after the electrochemical reaction. This indicates no Pt contamination of the working electrode during the reaction.

Fig. S18 Mott-Schottky plot of the *p*-type Si recorded under light irradiation.

Fig. S19 (a) Image of the 650 nm laser irradiation on the Au-FeS₂/FTO (AFS1.5) photodevice. The illumination intensity was 100 mW cm⁻². (b) The chronoamperometric current density value recorded at 0 V potential with chopped illumination.

Table S1 Comparison of the activities for the different Si-based photocathodes. Each experiment was carried out at the same light intensity of 100 mW cm^{-2} .

Photocathode	Cathodic	Applied	Electrolyte	Reference
	photocurrent	potential		
		(V) vs		
		RHE		
Au nanorod on MoS ₂	10 mA cm^{-2}	-0.26	0.1 M KC1	1
sheet				
MoS _x /n ⁺ P Si	10 mA cm^{-2}	-0.4	1.0 M HClO ₄	2
Graphite/exfoliated	40 mA cm^{-2}	-0.3	1.0 M KOH	3
graphene/Co ₉ S ₈ /Ni ₃ Se ₂				
in two electrode cell				
system				
Metallic $1T-MoS_2$ and	17.5 mA cm^{-2}	0.0	0.5 M H ₂ SO ₄	4
planar p-type Si				
Ni ₃ S ₄ surface modified	5 mA cm^{-2}	0.0	0.5 M Na ₂ SO ₄ , 0.25	5
with S^{2-} and Ni^{2+}			M Na ₂ HPO ₄ , and 0.25	
			M NaH ₂ PO ₄	
Plasmonic Cu ₂ S with	0.6 mA cm^{-2}	0.0	1.0 M KCl	6
defects (without any				
semiconductor)				
a-CoMoS _x on Si	17.5 mA cm^{-2}	0.0	Acidic phosphate	7
			buffered to pH 4.5	
WS ₂ on Si nanowire	18.8 mA cm^{-2}	0.0	0.05 M H ₂ SO ₄	8
$Cu_2O/g-C_3N_4/WS_2$	9.5 mA cm^{-2}	-0.55	1.0 M Na ₂ SO ₄	9
triple-layer				
photocathode (in visible				
light)				

Cobalt sulfide	6.43 mA cm^{-2}	0	0.5 M Na ₂ SO ₄	10
nanoparticle implanted				
porous organic polymer				
Cu ₂ S thin layers on	5.05 mA cm^{-2}	0	1 M Na ₂ SO ₄	11
Cu ₂ O nanowires			(supporting	
			electrolyte + 0.1 M	
			KH ₂ PO ₄); pH 4.5	
Ultrathin Pt layer on Au-	10 mA cm^{-2}	-1.0	0.1 M H ₂ SO4	12
nanoisland modified Si			electrolyte	
photocathode				
Photoassisted	10 mA cm^{-2}	-0.18	$1 \text{ M H}_2 \text{SO}_4$	13
electrochemically Pt				
deposited p-Si				
Pt /Ti/SiO ₂ /Si	10 mA cm^{-2}	-0.12	0.5 M H ₂ SO ₄	14
Si microwire with doped	10 mA cm^{-2}	0.07	0.5 M H ₂ SO ₄	15
heterometal MoS ₂				
Au-FeS ₂ co-axial	10 mA cm^{-2}	0.22	0.2 M H ₂ SO ₄	This work
heterostructure				

Table S2 Charge transfer resistance values evaluated from the electrochemical impedance spectra that were fitted on equivalent circuits having different constant phase elements.

Catalyst	Rct,Si (Ω cm ²)	$R_{ct,cat} (\Omega \ cm^2)$
FS0.5	27.11	1171
FS1.5	24.54	1108.7
FS2.5	15.8	932.5
AFS0.5	13.72	769.8
AFS1.5	12.4	418.3
AFS2.5	10.6	506.8

Table S3 Photoluminescence decay parameters and average lifetimes for the different FeS_2 catalysts.

Catalyst	τ_1	τ_2	a ₁	a ₂	τ_{av}
FS0.5	0.2677 ns	0.8253 ns	10787.228	506.124	0.292 ns
FS1.5	0.2980 ns	0.9125 ns	10639.514	488.945	0.325 ns
FS2.5	0.3976 ns	0.8941 ns	11253.061	332.194	0.412 ns

References

- 1. Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, H. Y. Chen, *J. Am. Chem. Soc.*, 2015, **137**, 7365–7370.
- B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angew. Chem., Int. Ed., 2012, 51, 9128–9131.
- Y. Hou, M. Qiu, G. Nam, M. G. Kim, T. Zhang, K. Liu, X. Zhuang, J. Cho, C. Yuan, X. Feng, *Nano Lett.*, 2017, 17, 4202–4209.
- Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, S. Jin, J. Am. Chem. Soc., 2014, 136, 8504–8507.
- S. Kim, T. Nishino, M. Saruyama, M. Sakamoto, H. Kobayashi, S. Akiyama, T. Yamada, K. Domen, T. Teranishi, *ChemNanoMat*, 2017, **3** 764–771.
- 6. K. Ren, P, Yin, Y. Zhou, X. Cao, C. Dong, L. Cui, H. Liu, X. Du, Small, 2017, 13(1700867).
- Y. Chen, P. D. Tran, P. Boix, Y. Ren, S. Y. Chiam, Z. Li, K. Fu, L. H. Wong, J. Barber, ACS Nano, 2015, 9, 3829–3836.
- Z. Huang, C. Wang, Z. Chen, H. Meng, C. Lv, Z. Chen, R. Han, C. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 10408–10414.
- X. Xu, Y. Liu, Y. Zhu, X. Fan, Y. Li, F. Zhang, G. Zhang, W. Peng, *ChemElectroChem*, 2017, 4, 1498–1502.
- 10. S. C. Shit, S. Khilari, I. Mondal, D. Pradhan, J. Mondal, *Chem. Eur. J.*, 2017, **23**, 14827–14838.
- 11. Z. Li, Z. Zhang, Nano Res., 2018, 11, 1530–1540.
- C. Das, M. Kot, Z. Rouissi, K. Kędzierski, K. Henkel, D. Schmeißer, ACS Omega, 2017, 2, 1360–1366.
- 13. C. U. Maier, M. Specht, G. Bilger, Int. J. Hydrogen Energy, 1996, 21, 859-864.
- 14. D. V Esposito, I. Levin, T. P. Moffat, A. A. Talin, Nat. Mater., 2013, 12, 562-568.
- 15. C-J Chen, K-C. Yang, C-W. Liu, Y-R. Lud, C-L. Dong, D-H. Wei, S-F. Hu, R-S. Liu, *Nano Energy*, 2017, **32**, 422–432.