Electronic Supplementary Information

Valorisation of Waste to Yield Recyclable Composites of Elemental Sulfur and Lignin

Menisha S. Karunarathna, Moira K. Lauer, Timmy Thiounn, Rhett C. Smith, and Andrew G. Tennyson
Fig. S1 \(^1\text{H}\) NMR Spectrum of allyl lignin.

Fig. S2 FTIR spectra of reference (blue color) and allyl lignin (red color)
Fig. S3 IR Spectra of composites materials LS_{80} (blue solid line), LS_{85} (purple dashed line), LS_{90} (orange dashed line), LS_{95} (black solid line), LS_{99} (red dashed line), sulfur (green solid line)

Fig. S4 TGA curves of prepared composite materials. Allyl lignin (yellow dashed line, LS_{80} (blue solid line), sulfur (green solid line)
Fig. S5 The graph showing residue percentage remaining after heating to 800 °C in TGA experiments versus the weight percent of lignin in monomer feed.

Fig. S6 a) DSC curves of LS$_{80}$ (blue solid line), LS$_{85}$ (purple dashed line), LS$_{90}$ (orange dashed line), LS$_{95}$ (black solid line), LS$_{99}$ (red dashed line), sulfur (green solid line) b) enlarged view of DSC curves of LS$_{80}$ (blue solid line) and LS$_{85}$ (purple dashed line) showing T_g and cold crystallization peaks.
Fig. S7 DSC data for allyl lignin (red line) and reference lignin (blue line). The T_g values are marked for clarity.
Fig. S8 DGA curves for data presented in Figure 3 of the manuscript