Supporting Information

Highly boosted discharged energy density of polymer nanocomposites via novel hybrid structure as fillers

Zhongbin Pan*, Shuang Xinga, Haitao Jiangc, Jinjun Liua, Shuangwu Huanga, and Jiwei Zhai*b

aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
bSchool of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
cCollege of Science, Donghua University, Shanghai 201620, China.

*E-mail: panzhongbin@163.com (Zhongbin Pan), apzhai@tongji.edu.cn (Jiwei Zhai), liujunjun1@nbu.edu.cn (Jinjun Liu)
Figure S1 P-E loops of pure PVDF-HFP and composite films with different 1D ABPAs contents.
Supporting Information 2

Figure S2 Dielectric constant and dielectric loss dependence of frequency for pure PVDF-HFP and composite films with different 1D Bs contents.
Supporting Information 3

Figure S3 Dielectric constant and dielectric loss dependence of frequency for pure PVDF-HFP and composite films with different 1D ABs contents.
Supporting Information 4

Figure S4 Dielectric constant and dielectric loss dependence of frequency for pure PVDF-HFP and composite films with different 1D ABPs contents.
Supporting Information 5

Figure S5 P-E loops of composite films with different structure fillers of 1D Bs, 1D ABs, 1D ABPs, and 1D ABPAs.
Supporting Information 6

Figure S6 Cycle performance of 1D ABPAs/P(VDF-HFP) composite films under 250 MV/m at room temperature.