Supporting Information

Constructing Z-scheme SnO$_2$/N-doped Carbon Quantum Dots/ZnSn(OH)$_6$ Nanohybrids with High Redox Ability for NOx Removal under VIS-NIR Light

Yanfeng Lu$^{a,b,d}$, Yu Huang$^{a,b,c,*}$, Jun-ji Cao$^{a,b,c}$, Haiwei Li$^e$, Wingkei Ho$^f$, Shun Cheng Lee$^e$

$^a$ Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

$^b$ State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

$^c$ CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061, China

$^d$ University of Chinese Academy of Sciences, Beijing 100049, China

$^e$ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

$^f$ Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong, China

*Corresponding author: Prof. Yu Huang

E-mail address: huangyu@ieecas.cn

Tel: +86-02962336261

Fax: +86-02962336261
CONTENTS

Experimental section ............................................................................................................. S5

Preparation of NCDs ............................................................................................................. S5

Electrochemical analysis ..................................................................................................... S5

Photocatalytic performance measurements ....................................................................... S6

Schemes and corresponding descriptions ........................................................................... S7

Scheme S1. Schematic diagram of in-situ synthesis process of SnO₂/NCDs/ZnSn(OH)₆ ternary Z-scheme nanohybrids. ......................................................................................... S7

Scheme S2. (a) VERTEX 70 spectrometer (Bruker, Germany); (b) In situ reaction cell; (c) Pretreatment equipment and light source. ......................................................................................... S8

Table .................................................................................................................................... S9

Table S1. Element atomic concentration of investigated catalysts by XPS measurement. .... S9

Table S2. Element analysis of as-prepared samples. ............................................................. S9

Figures and corresponding descriptions. .......................................................................... S10

Fig. S1. Raman patterns of ZnSn(OH)₆. .................................................................................. S10

Fig. S2. XRD patterns of (a) all the as-prepared and (b) pure SnO₂ samples...................... S10

Fig. S3. FTIR spectra of ZHS and SnO₂/NCDs/ZHS. ............................................................. S11

Fig. S4. XPS survey spectra of pure ZHS, NCDs and SnO₂/NCDs/ZHS nanohybrid. ........ S11

Fig. S5. The high-resolution XPS spectra of C 1s in pure ZnSn(OH)₆, NCDs and SnO₂/NCDs/ZHS nanohybrid. ................................................................. S12

Fig. S6. The high-resolution XPS spectra of Zn 2p (a), Sn 3d (b) in pure ZnSn(OH)₆ and SnO₂/NCDs/ZHS nanohybrid. ................................................................. S12

Fig. S7. The high-resolution XPS spectra of O 1s in pure ZnSn(OH)₆ and SnO₂/NCDs/ZHS nanohybrid. ................................................................. S13

Fig. S8. TEM images of pristine ZHS nanocubes.
Fig. S9. (a) N$_2$ adsorption–desorption isotherms and (b) corresponding pore-size distribution curves of the pristine ZHS and SnO$_2$/NCDs/ZHS nanohybrid. ..........................S14
Fig. S10. Time profile of NO photocatalytic removal and the relative change NO$_2$ over different photocatalysts under simulated solar light irradiation. ..............................S14
Fig. S11. Time profile of NO photocatalytic removal and the relative change NO$_2$ over SnO$_2$/NCDs/ZHS ternary nanohybrid for successive runs 375 min under visible-light irradiation. ...............................................................................................S15
Fig. S12. TGA profiles of ZnSn(OH)$_6$ powders in air flow. ........................................S15
Fig. S13. FTIR spectra of SnO$_2$/NCDs/ZHS nanohybrid before and after the stability tests of successive runs 375 min. .................................................................S16
Fig. S14. XRD spectra of SnO$_2$/NCDs/ZHS nanohybrid before and after the stability tests of successive runs 375 min. ....................................................................................S16
Fig. S15. The comparison of SnO$_2$/NCDs/ZHS ternary Z-scheme nanohybrid and mechanical mixing samples using SnO$_2$/ZHS and NCDs for NO photocatalytic removal and the relative change NO$_2$ under visible-light irradiation. ..................................................................................S17
Fig. S16. Room temperature ESR spectra of pure ZHS during 12 min visible light irradiation, using DMPO as spin trapping agent. ..........................................................S18
Fig. S17. Detection of (a) ·OH and (b) ·O$_2^–$ radicals over NCDs/SnO$_2$ and NCDs/ZHS under visible-light illumination ($\lambda \geq 420$ nm) by DMPO ESR spin trapping. .......................S18
Fig. S18. UV–Vis absorption of pure ZnSn(OH)$_6$ and SnO$_2$ samples. ..........................S19
Fig. S19. Tauc plots of as-prepared ZHS, SnO$_2$ and NCDs/SnO$_2$/ZHS samples. ..........................S19
Fig. S20. Time profile of NO photocatalytic removal and the relative change of NO$_2$ over pristine SnO$_2$ and SnO$_2$/NCDs nanocomposite with different volume ratio of NCDs solution under visible-light irradiation. .............................................................S20
Fig. S21. The time scale element profiles. ...........................................................................S21
Fig. S22. Time profile of NO photocatalytic removal and the relative change of NO$_2$ over
NCDs/ZHS nanocomposites with different volume ratio of NCDs under visible light (\(\lambda \geq 420 \text{ nm}\)) irradiation. .................................................................S22

**Fig. S23.** Time profiles of NO photocatalytic removal and the relative change of NO\(_2\) over pristine ZHS and SnO\(_2\)/NCDs/ZHS Z-scheme nanohybrids with different loading amount of SnO\(_2\) under visible-light irradiation. .................................................................S22

**Fig. S24.** Time profile of NO photocatalytic removal and the relative change of NO\(_2\) over pristine ZHS and SnO\(_2\)/NCDs/ZHS Z-scheme nanohybrids with different volume ratio of NCDs solution under visible-light irradiation. ..................................................S24

**Fig. S25.** In situ IR spectra of SnO\(_2\)/NCDs/ZHS Z-scheme photocatalyst during adsorption process in the dark. .................................................................S25

**Fig. S26.** In situ IR spectra of pristine ZHS during adsorption process in the dark and photocatalytic NO oxidation under visible light irradiation. ..........................S26

**Fig. S27.** In situ IR spectra of SnO\(_2\)/ZHS nanocomposite during adsorption process in the dark and photocatalytic NO oxidation under visible light irradiation. .........................S26

**Fig. S28.** In situ IR spectra of NCDs/ZHS nanocomposite (a) during adsorption process in the dark and (b) photocatalytic NO oxidation under visible light irradiation. .........................S27

**Fig. S29.** The time scale IC profiles. The inset is the production amount of NO\(_2^-\) and NO\(_3^-\) over SnO\(_2\)/NCDs/ZHS sample. .................................................................S27

**References** ........................................................................................................S28
Experimental section

Preparation of NCDs

NCDs was synthesized through a hydrothermal method. 3 g of citric acid and 3 g urea were mixed with 10 mL deionized water under vigorous stirring for 30 min. Then the solution was transferred to a 50 mL Teflon-lined stainless steel autoclave and heated at 180 °C for 4.5 h. After cooling down to room temperature, the dark green liquid was collected as NCDs by centrifugal treatment with 9000 rpm for 5 min.

Electrochemical analysis

The photocurrent response, electrochemical impedance spectra and flat band potential of the as-synthesized samples were detected by a Parstat4000 electrochemical workstation (USA) with a platinum plate and an Ag/AgCl electrode in a conventional three-electrode cell as the counter and reference electrodes, respectively. The photocurrent-time curves were measured at 0.2 V vs. Ag/AgCl in 0.5 mol·L⁻¹ Na₂SO₃ at room temperature under irradiation with a 100 W LED lamp (λ = 420 nm). Electrochemical impedance spectroscopy (EIS) was conducted under open-circuit voltage in 1 mmol L⁻¹ K₃Fe(CN)₆ and K₄Fe(CN)₆ solution. The flat band potential was measured through Mott–Schottky plots at a frequency of 1 kHz in 0.1 mol L⁻¹ Na₂SO₄ (pH=7).
Photocatalytic performance measurements

The NO photo-oxidation activities of as-prepared sample were evaluated in a continuous-flow rectangular chamber with a volume capacity of 4.5 L (30 cm × 15 cm × 10 cm), which was similar to that in the ISO 22197-1 standard. Firstly, 0.2 g photocatalyst was spread on a glass dish (10.0 cm in diameter) and placed inside of the reactor. Then the gas stream with the 400 ppb NO, relative humidity of 30±5% and flow rate of 3 L/min, is prepared and fed to the chamber. A 300 W electric input Xenon lamp (Perfectlight, microsolar300, Beijing) is placed above the reactor. The light source with different wavelengths (simulated solar light, visible light, 365 nm, 450 nm, 550 nm, 700 nm, 800–1100 nm) was obtained by passing through the bandpass and cutoff filters. After the adsorption-desorption equilibrium the light source is turned on and the concentration of NO and NO$_2$ are quantified by a chemiluminescence NOx analyzer (Ecotech 9841, Australia). The efficiency of NO photo-oxidation at any given time was denoted as C/Co, where Co is the initial concentration and of NO, ppb.
A SnO$_2$/NCDs/ZHS Z-scheme photocatalyst is fabricated by an *in-situ* deposition of NCDs and SnO$_2$ cocatalyst on the surfaces of the nanoarchitecture mesoporous ZHS nanocubes. The typical synthesis of the SnO$_2$/ZHS nanocomposite decorated by NCDs is illustrated in Scheme 1. First, the ZHS nanocubes were generated in a continuously stirred reactor in ambient temperature. By adding the solution of NCDs into the precursor, the NCDs were tightly adsorbed on the surface of ZHS nanocubes due to hydrogen bond interactions. While
the solvothermal reaction was processed with pH~6.1, SnO₂ nanoparticles were obtained on the surface of ZHS, which due to the transform of Sn(OH)₄ during solvothermal reaction with pH~6.1: \( \text{Sn(OH)₄} \rightarrow \text{SnO₂} + 2\text{H₂O} \). During the solvothermal procedure, NCDs and SnO₂ nanoparticles was anchored homogeneously in situ on the nanoarchitecture mesoporous ZHS surface.

Scheme S2. (a) VERTEX 70 spectrometer (Bruker, Germany); (b) In situ reaction cell; (c) Pretreatment equipment and light source.
**Table S1.** Element atomic concentration of investigated catalysts by XPS measurement.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Atomic ratio (at. %)</th>
<th>Calculated Zn 2p</th>
<th>Calculated Sn 3d</th>
<th>Calculated O 1s</th>
<th>Calculated C 1s</th>
<th>Calculated N 1s</th>
<th>SnO$_2$ ratio by XPS (at. %)</th>
<th>BET surface area (m$^2$/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHS</td>
<td>11.8</td>
<td>10.9</td>
<td>59.6</td>
<td>17.7</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>172.7</td>
</tr>
<tr>
<td>SnO$_2$/NCDs/ZHS</td>
<td>10.8</td>
<td>12.1</td>
<td>54.6</td>
<td>22.1</td>
<td>0.4</td>
<td>12</td>
<td>3.7</td>
<td>105.6</td>
</tr>
<tr>
<td>NCDs</td>
<td>/</td>
<td>/</td>
<td>34.5</td>
<td>48.8</td>
<td>16.6</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

**Table S2.** Element analysis of as-prepared samples.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Weight (mg)</th>
<th>N%</th>
<th>C%</th>
<th>C/N</th>
<th>NCDs% (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZHS</td>
<td>11.1</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>SnO$_2$/ZHS</td>
<td>15.7</td>
<td>0.05</td>
<td>0.06</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>NCDs/ZHS</td>
<td>58.2</td>
<td>1.27</td>
<td>4.14</td>
<td>3.25</td>
<td>4.14</td>
</tr>
<tr>
<td>SnO$_2$/NCDs/ZHS</td>
<td>55.8</td>
<td>1.18</td>
<td>3.04</td>
<td>2.58</td>
<td>3.04</td>
</tr>
</tbody>
</table>
Fig. S1. Raman patterns of ZnSn(OH)$_6$.

Fig. S2. XRD patterns of (a) all the as-prepared and (b) pure SnO$_2$ samples.
Fig. S3. FTIR spectra of ZHS and SnO$_2$/NCDs/ZHS.

Fig. S4. XPS survey spectra of pure ZHS, NCDs and SnO$_2$/NCDs/ZHS nanohybrid.
Fig. S5. The high-resolution XPS spectra of C 1s in pure ZnSn(OH)$_6$, NCDs and SnO$_2$/NCDs/ZHS nanohybrid.

Fig. S6. The high-resolution XPS spectra of Zn 2p (a), Sn 3d (b) in pure ZnSn(OH)$_6$ and SnO$_2$/NCDs/ZHS nanohybrid.
Fig. S7. The high-resolution XPS spectra of O 1s in pure ZnSn(OH)$_6$ and SnO$_2$/NCDs/ZHS nanohybrid.

Fig. S8. TEM images of pristine ZHS nanocubes.
Fig. S9. (a) N$_2$ adsorption–desorption isotherms and (b) corresponding pore-size distribution curves of the pristine ZHS and SnO$_2$/NCDs/ZHS nanohybrid.

Fig. S10. Time profile of NO photocatalytic removal and the relative change NO$_2$ over different photocatalysts under simulated solar light irradiation.
Fig. S11. Time profile of NO photocatalytic removal and the relative change NO\textsubscript{2} over SnO\textsubscript{2}/NCDs/ZHS ternary nanohybrid for successive runs 375 min under visible-light irradiation.

Fig. S12. TGA profiles of ZnSn(OH)\textsubscript{6} powders in air flow.

The thermal stability of the pristine ZHS precursor was also surveyed by thermogravimetric analysis (TGA), and the results showed that ZnSn(OH)\textsubscript{6} thermally decomposes at an elevated temperature (> 279 °C) with the decomposition reaction: ZnSn(OH)\textsubscript{6} → ZnSnO\textsubscript{3} + 3H\textsubscript{2}O,
Fig. S13. FTIR spectra of SnO$_2$/NCDs/ZHS nanohybrid before and after the stability tests of successive runs 375 min.

Fig. S14. XRD spectra of SnO$_2$/NCDs/ZHS nanohybrid before and after the stability tests of successive runs 375 min.
It can be observed that the optimized SnO$_2$/NCDs/ZHS ternary nanohybrid shows no apparent alterations in components (Fig. S13) or in the crystal structure (Fig. S14) under the same reaction conditions for successive runs 375 min tests in comparison with that before the photocatalytic reaction.

**Fig. S15.** The comparison of SnO$_2$/NCDs/ZHS ternary Z-scheme nanohybrid and mechanical mixing samples using SnO$_2$/ZHS and NCDs for NO photocatalytic removal and the relative change NO$_2$ under visible-light irradiation.
**Fig. S16.** Room temperature ESR spectra of pure ZHS during 12 min visible light irradiation, using DMPO as spin trapping agent.

**Fig. S17.** Detection of (a) ·OH and (b) ·O$_2^-$ radicals over NCDs/SnO$_2$ and NCDs/ZHS under visible-light illumination (λ ≥ 420 nm) by DMPO ESR spin trapping.
The band gap energies (Eg) of the prepared as-prepared pure ZHS and SnO₂ samples were determined using Tauc plot approach: K(hν-Eg)¹/n = F(R)hν, where K is a constant, hν is photon energy, F(R) is the absorption coefficient and n equals 2 for direct transition of ZHS and SnO₂.
**Fig. S20.** Time profile of NO photocatalytic removal and the relative change of NO₂ over pristine SnO₂ and SnO₂/NCDs nanocomposite with different volume ratio of NCDs solution under visible-light irradiation.

The controllable contrast samples of SnO₂/NCDs nanocomposites with different volume ratio of NCDs were prepared by similar solvothermal method. 0.7 g of SnCl₄·5H₂O and 0.4 g NaOH was first dissolved in 15mL deionized water and 20 mL ethanol. The mixture was kept stirring for 7 h and maintained pH to 6.1 using sodium hydroxide solution (2 M). The mixture was transferred to a 50 mL Teflon-lined stainless steel autoclave and maintained at 160 °C for 12 h. The resulting composites were washed with ethanol and water three times, and dried at 60 °C for 12 h to obtain the pure SnO₂. The SnO₂/NCDs nanocomposites with different volume ratio of NCDs were prepared by change the volume ratio of NCDs solution. We changed the volume of addition of NCDs solution with different volume ratios (0.5/1.0/1.7/2.3 %), keeping all other conditions unchanged.

The controllable contrast samples of SnO₂/NCDs nanocomposites with the different
volume ratio of NCDs were prepared to removal NO under visible-light irradiation. Fig. S20 shows the photocatalytic activities over the SnO$_2$/NCDs nanocomposites with different volume ratio of NCDs are almost no change and remain around 5%, which illustrated there is no evident impact for the NO removal rate with the amount change of NCDs. This indicates that the amount change of NCDs in SnO$_2$/NCDs system is incapable of assisting in the generation of more reactive oxygen species during the photocatalytic reaction.

Fig. S21. The time scale element profiles.
**Fig. S22.** Time profile of NO photocatalytic removal and the relative change of NO\textsubscript{2} over NCDs/ZHS nanocomposites with different volume ratio of NCDs under visible light (\(\lambda \geq 420\) nm) irradiation.

**Fig. S23.** Time profiles of NO photocatalytic removal and the relative change of NO\textsubscript{2} over pristine ZHS and SnO\textsubscript{2}/NCDs/ZHS Z-scheme nanohybrids with different loading amount of SnO\textsubscript{2} under visible-light irradiation.
The SnO₂/NCDs/ZHS ternary nanohybrids with different quality of SnO₂ sample were prepared by change the pH of precursor solution. We adjusted and maintained the pH of the mixture to 3.7, 5.2, 6.1, 7.8 and 13.6 using sodium hydroxide solution (2M/5M), keeping all other conditions unchanged.

To further understand the role of SnO₂ in SnO₂/NCDs/ZHS ternary Z-scheme nanohybrids, the NO removal rate over ternary Z-scheme photocatalysts with different quality of SnO₂ (the loading quality of SnO₂ decreased with increasing of solution pH) were displayed under visible-light irradiation. Fig. S23 shows the photocatalytic NO removal rate increases initially with decreasing of the loading quality of SnO₂ and then reaches a maximum when the amount of SnO₂ is about 12% (pH ~ 6.1, Calculated SnO₂ ratio by XPS). It can be seen that NO removal rate over SnO₂/NCDs/ZHS ternary Z-scheme nanohybrids with pH ~ 13.6 (SnO₂ ratio is trending to 0%) was evaluated to be 5% under visible-light irradiation for 30 min, which is much lower than that of SnO₂/NCDs/ZHS ternary Z-scheme nanohybrids with 12% SnO₂ (37%). This behavior can be attributed to the fact that a further increase in the amount of SnO₂ leads to a decrease in the NO removal rate, due to the completely encased surface on ZHS impeding the contact of ZHS and NCDs by the excessive loading of SnO₂, which blocked the photo-induced electrons transfer from NCDs to the CB of ZHS. Therefore, an appropriate SnO₂ loading amount is a key factor in achieving optimized photocatalytic activity of SnO₂/NCDs/ZHS ternary Z-scheme nanohybrids.
**Fig. S24.** Time profile of NO photocatalytic removal and the relative change of NO$_2$ over pristine ZHS and SnO$_2$/NCDs/ZHS Z-scheme nanohybrids with different volume ratio of NCDs solution under visible-light irradiation.

All controllable contrast samples were prepared by similar solvothermal method. The SnO$_2$/NCDs/ZHS ternary Z-scheme nanohybrids with different volume ratio of NCDs were prepared by change the volume ratio of NCDs solution. 0.7 g of SnCl$_4$·5H$_2$O and 0.4 g NaOH was first dissolved in 15 mL deionized water and was stirred for 30 min. 0.4 g of (CH$_3$COO)$_2$Zn·2H$_2$O was dispersed in 20 mL ethanol with ultrasounds for 30 min and then was added into the previous solution dropwise. The mixture was kept stirring for 7 h and maintained pH to 6.1 using sodium hydroxide solution (2M). Subsequently, the NCDs solution with different volume ratios (0.5/1.0/1.7/2.3 %) was added into the above solution with stirring for 1 h and transferred to a 50 mL Teflon-lined stainless steel autoclave and maintained at 160 °C for 12 h. The resulting composites were washed with ethanol and water three times, and dried at 60 ºC for 12 h to obtain the SnO$_2$/NCDs/ZHS ternary nanohybrids.
with different volume ratio of NCDs.

To investigate how the NCDs influence the photocatalytic activity of the Z-scheme nanohybrids, we further evaluated the visible-light photocatalytic removal NO activities (λ ≥ 420 nm) of the resultant SnO$_2$/NCDs/ZHS Z-scheme nanohybrids with different amounts of NCDs. As presented in Fig. S24, compared with pristine ZHS, the efficiency of NO removal over the SnO$_2$/NCDs/ZHS nanohybrids with different amounts of NCDs are significantly enhanced, while the production of NO$_2$ is trending to 0 ppb. An appropriate NCDs loading amount (Vol 1.7%) is capable of assisting in the absorption of visible light and the transfer of photo-induced electron at the semiconductor interface, which is a key factor in achieving optimized photocatalytic activity of SnO$_2$/NCDs/ZHS ternary Z-scheme nanohybrids.

**Fig. S25.** In situ IR spectra of SnO$_2$/NCDs/ZHS Z-scheme photocatalyst during adsorption process in the dark.
**Fig. S26.** In situ IR spectra of pristine ZHS during adsorption process in the dark and photocatalytic NO oxidation under visible light irradiation.

**Fig. S27.** In situ IR spectra of SnO$_2$/ZHS nanocomposite during adsorption process in the dark and photocatalytic NO oxidation under visible light irradiation.
**Fig. S28.** In situ IR spectra of NCDs/ZHS nanocomposite (a) during adsorption process in the dark and (b) photocatalytic NO oxidation under visible light irradiation.

**Fig. S29.** The time scale IC profiles. The inset is the production amount of $\text{NO}_2^-$ and $\text{NO}_3^-$ over SnO$_2$/NCDs/ZHS sample.
References

