Heptazine-based porous graphitic carbon nitride: a visible-light driven photocatalyst for water splitting

Bin Liua, Bo Xua, b, *, Shenchang Lia, Jinli Dua, Jiang Yinb, c, Zhiguo Liuc, Wenying Zhonga, *

a School of Science and Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China. Emails: xubo@cpu.edu.cn and wyzhong@cpu.edu.cn.

b National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.

c Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Fig. S1 The full of phonon dispersion of C\textsubscript{6}N\textsubscript{7} monolayer.
Fig. S2 Minimum energy path for the dissociation of a water molecule on the surface of C$_6$N$_7$ monolayer with the optimized geometries of the *H$_2$O, transition state (TS), and *OH + *H.

Fig. S3 The shift of VBM and CBM for C$_6$N$_7$ monolayer with respect to the vacuum energy, as a function of the applied strain. The linear fit of the data yields the deformation potential constant.