Supporting Information

Effective Charge Separation of Inverted Polymer Solar Cells using Versatile MoS₂ Nanosheets as Electron Transport Layer

Kyu Seung Lee a, b,||, Young Jae Park a, b,||, Jaeho Shim a, b, Chil-Hyoung Lee a, Guh-Hwan Lim a, Hak Yong Kim c, d, Jin Woo Choi e, Chang-Lyoul Lee e, Yeonghoon Jin b, Kyoungsik Yu b, Hee-Suk Chung f, Basavaraj Angadi g, Seok-In Na h, and Dong Ick Son a, i, *

a Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
b School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
c Department of BIN Convergence technology, Chonbuk National University, 567 baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea
d Department of Organic Materials & Fiber Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea
e Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu, Gwangju 500-712, Republic of Korea
f Analytical Research Division, Korea Basic Science Institute, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk, 54907, Republic of Korea
g Department of Physics, Bangalore University, Bangalore, 560–056, India
h Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeonbuk, 664-14, Republic of Korea

*Corresponding author: E-mail address: eastwing33@kist.re.kr (D. I. Son) Tel: +82 63 2198155, Fax: +82 63 2198129
|| These authors contributed equally to this work.
† Electronic supplementary information (ESI) available: additional topographic images, and additional ADF and ABF images, and additional UPS data of PEIE/ITO/glass, and additional energy band diagram.
KIST school, Department of Nanomaterials and Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
1. Experimental.

2. The topographic images of MoS$_2$ NSs and line profile.

3. The topographic images of SiO$_2$ on Si substrate and PEIE on SiO$_2$ on Si substrate.

4. The annular dark field (ADF) and annular bright field (ABF) images of the MoS$_2$ Nanosheets on the PEIE/ITO/glass.

5. The work function (Φ) of the spin-coated PEIE onto ITO/glass and ITO/glass calculated by using a ultraviolet photoelectron spectroscopy (UPS).

6. Energy level diagram of the iPSCs with the MoS$_2$ interlayer highlighting pathways for charge generation and transport.

7. The structure of optical absorption simulation.
1. Experimental

1.1. Exfoliation of MoS$_2$ Nanosheets: 2 g of the commercial MoS$_2$ sheets (2D semiconductor) was dispersed in 1 L of ethanol. The MoS$_2$ dispersion was treated by tip-sonication for 5 hours. Then, the MoS$_2$ dispersion was centrifuged for 30 min at 8000 rpm to collect a supernatant and remove precipitation. The initial concentration of the MoS$_2$ NS supernatant was 100 ± 2.7 mg/L. Then, the supernatant was diluted in 1mL of ethanol and the concentration was estimated to be about 16.67 mg/L.

1.2. Characterization of MoS$_2$ Nanosheets: The MoS$_2$ NSs were characterized through TEM, AFM, Raman spectroscopy, UV-vis absorption spectroscopy, and PL spectroscopy. The TEM images were obtained using a Philips Tecnai G2 F20 TEM microscope with an accelerating voltage of 200 kV. The AFM surface images and height distribution were measured by Park system NX10. The MoS$_2$ NSs solution in DMF was deposited on a silicon wafer by spin coating and drying under ambient conditions. The AFM image was obtained in a tapping mode. Different concentrations of MoS$_2$ NSs solution were used to achieve layers deposited on SiO$_2$/Si substrate. Raman spectra of MoS$_2$ NSs were obtained using a Horiba Jobin Yvon-Labram HR UV visible NIR Raman microscope spectrometer with a 514 nm Ar laser. Ultraviolet-visible (UV-vis) absorption spectra of the MoS$_2$ NSs measured with a Shimadzu, UV-2600 UV-vis spectrophotometer. PL spectra were obtained using a Horiba NanoLog-C. To demonstrated the MoS$_2$ NSs of energy levels using electrochemical cyclic voltammetry. MoS$_2$ NSs were dispersed in a 0.5% Nafion solution (isopropanol and dimethylformamide) and dropped on glassy carbon electrode to serve as the working electrode. The counter electrode and the reference electrode were platinum wire and Ag/AgNO$_3$ (in 0.01 M MeCN), respectively, and the electrolyte was a
solution of 0.1 M tetrabutylammonium phosphorus hexa fluoride (TBAPF6) in anhydrous acetonitrile. Measurements were performed at room temperature with a scan rate of 100 mV/s.

1. 3. Device fabrication process of iPSCs: 1.5 × 1.5 cm² patterned ITO-coated glass substrates were cleaned with acetone, ethanol, and 2-propanol, respectively. The ITO-coated glass was treated with O₂ plasma for 40 sec. PEIE layer was spin-coated on the ITO-coated glass at 4000 rpm for 40 sec, and the substrate was annealed at 110 °C for 10 min. After annealing, 0.1 ml of MoS₂ NSs in 1 ml of ethanol solution was spin-coated on the PEIE surface at 4000 rpm for 40 sec, followed by annealing at 140 °C for 10 min under ambient conditions. The substrates were transferred into a nitrogen-filled glove box. The blend of P3HT:PC₆₀BM (1.5:1 (by weight)), PTB7:PC₇₁BM (1:1.5 (by weight)), PTB7-Th:PC₇₁BM (1:1.5 (by weight)) solution were spin-coated onto the MoS₂ NSs interlayer at 2000 rpm for 10 sec and 1400 rpm for 10 sec, respectively. Finally, MoO₃ (10 nm) and Ag (80 nm) were deposited by thermal evaporation on the active layer under a pressure of 1x10⁻⁶ Torr.

1. 4. Characterization of iPSCs structures: The structures of iPSCs with the MoS₂ NSs/PEIE/ITO/glass were characterized through Focused Ion Beam (FIB), TEM and STEM-EDS. In detail, The FIB was applied for cross-sectional sample preparation of iPSCs with both TEM and STEM-EDS. Thinly sliced TEM samples were prepared using a FIB (Nova nanolab 600 Dual Beam) operating at 5~20 kV with Ga ions. The TEM images were obtained using a Philips Tecnai G2 F20 TEM microscope with an accelerating voltage of 200 kV. The STEM-EDS images were obtained using a JEM-ARM200F Cs-corrected STEM.

1. 5. Photovoltaic device characterization of iPSCs with/without MoS₂ Nanosheets: The iPSCs were then tested in air under an AM 1.5 G illumination of 100 mW/cm² (Oriel 1 kW solar
simulator), which was calibrated with the International System of Units (SI) (SRC-1000-TC
KG5-N, VLSI Standards, Inc) for accurate measurement. The external quantum efficiency (EQE)
was measured using an Oriel IQE-200 (Newport), a calibrated Si UV detector and an SR8570
low noise current amplifier. In TCSPC, photo-excitation was carried out by the mode-locked
titanium: sapphire laser with the wavelength of 400 nm and luminescence signals were detected
by an InGaAs based photomultiplier detector.
2. The topographic images of MoS$_2$ NSs and line profile.

Figure S1. Topographic images and line profiles of the MoS$_2$ NSs before (a) and (c) after tip-sonication exfoliation and centrifugation process (b) and (d) corresponding to the white line in the topographic images.
3. The topographic images of SiO\textsubscript{2} on Si substrate and PEIE on SiO\textsubscript{2} on Si substrate.

Figure S2. Topographic images RMS values of the SiO\textsubscript{2} on Si (a) and PEIE on SiO\textsubscript{2} on Si substrate (b).
4. The annular dark field (ADF) and annular bright field (ABF) images of the MoS$_2$ NSs on the PEIE/ITO/glass.

Figure S3. The annular dark field (ADF) and annular bright field (ABF) images of the MoS$_2$ NSs.

We performed image analysis of MoS$_2$ NSs by a spherical aberration-corrected scanning TEM (Cs-TEM). As shown in Fig. S2(a) and S2(b), we show the annular dark field (ADF) and annular bright field (ABF) images of the MoS$_2$ NSs and the ITO/glass substrate. Through the ADF and ABF images, the contrast of the MoS$_2$ NSs layer was improved by confirming the shape of the MoS$_2$ NSs. As a result, MoS$_2$ NSs applied as ETL could be clearly confirmed.
5. The work function (Φ) of the spin-coated PEIE onto ITO/glass and ITO/glass calculated by using an ultraviolet photoelectron spectroscopy (UPS).

![Graph showing intensity vs kinetic energy for PEIE/ITO and ITO](image)

Figure S4. The work function of the PEIE/ITO/Glass and ITO/Glass.

The work function value of the ITO, PEIE/ITO structures obtained 4.29 eV, 3.36 eV, respectively. In this structure, the PEIE layer plays a role as a surface modifying layer on the ITO layer for good electron selectivity and efficiently promotes electron transportation to decrease the work function of ITO due to the formation of dipole layer.¹
6. Energy level diagram of the iPSCs with the MoS$_2$ interlayer highlighting pathways for charge generation and transport.

Figure S5. Energy level diagrams of the inverted PSCs with the MoS$_2$ interlayer.

The energy level diagrams of iPSCs demonstrate the possible pathways of current generation and transportation after the excitation of the photoactive materials P3HT:PC$_{60}$BM (a) and PTB7-th:PC$_{71}$BM (b)2.
7. The structure of optical absorption simulation.

![Diagram of the solar cell structure](image)

Figure S6. The structure of optical absorption simulation.

The solar cell structure used for the simulation is the Ag (80 nm)/MoO₃ (10 nm)/PTB7:PC₇₁BM (120 nm)/MoS₂ (8.31 nm)/PEIE (3 nm)/ITO (150 nm)/glass (1.1 mm) structures. MoS₂ NS diameter: 25 nm and spacing between the edges of MoS₂ NS: 104 nm.
Reference
