C–H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by DMF cosolvent

Wei-Ya Huang,‡ Zhao-Qi Shen,‡ Jing-Zhao Cheng,‡ Li-Lin Liu, Kai Yang, Xirong Chen, He-Rui Wen and Shi-Yong Liu*

College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.

Contents

Instruments and Characterization Methods .................................................. S2

Fig. S1 (Catalytic cycle of Pd-catalyzed C–H/C–X and XPS spectra) .................. S4
Fig. S2 (FT-IR spectra of as-prepared CPs1–4) ........................................ S4
Fig. S3 (TGA curves of as-prepared CPs1–4) ........................................ S5
Fig. S4 (DFT-optimized structures of repeat units of CPs1–4) ...................... S5
Fig. S5 (N2 adsorption-desorption isotherms of CPs1–4) .......................... S6
Fig. S6 (CV curves of CPs1–4) ............................................................. S6
Fig. S7 (HERs of CP1 dispersed in varied aqueous solutions) ...................... S7
Scheme S1 (Resonance structures of DMF, Hydrogen bond between DMF-H2O) ........ S7
Table S1 (Summary of HERs of organic & inorganic photocatalysts) ............. S8
Fig. S8 (PHP performances of CPs1–4 dispersed in AA/DFM/H2O) ............. S8
Fig. S9 (Uv-vis absorption and AQY of CP1) ......................................... S9
Fig. S10 (FT-IR spectra of CP1 before and after cycle test) ......................... S9
Fig. S11 (Uv-vis spectra of CP1 before and after cycle test) ......................... S10
Fig. S12 (PHP performances of CP1 with and without Pt-cocatalyst) ........... S10
Instruments and Methods.

Solid state magic angle spinning $^{13}$C CP/MAS NMR measurement was carried out on a Bruker Avance 400 model 400 MHz NMR spectrometer at a MAS rate of 10 kHz. FT-IR spectrum was measured on a FT-IR spectrometer (Bruker, ALPHA) in transmission mode at room temperature. Thermal properties of the polymer networks were evaluated using thermogravimetric analysis (TGA) with a differential thermal analysis instrument (STA2500, NETZSCH) over the temperature range from 30 to 800 °C under a nitrogen atmosphere with a heating rate of 10 °C min$^{-1}$. High resolution X-ray photoelectron spectra (XPS) were collected at a takeoff angle of 90° on Thermo ESCALAB 250XI (Thermo Fisher Scientific, USA) with an Al Kα X-ray line (1486.6 eV). Theoretical calculations based on density functional methods have been performed for CPs1–4 with Gaussian09 program. Becke’s three-parameter gradient-corrected functional (B3LYP) with 6-31G(d,p) basis was used to optimize the geometry.

Morphology of the polymer networks was obtained using a field emission scanning electron microscope (SEM, MLA650F, American) and transmission electron microscope (TEM, Tecnai G2-20, American). Surface areas and pore size distributions were measured by N$_2$ adsorption and desorption at 77.3 K using an ASAP 2020 HD88 (Micromeritics) volumetric adsorption analyzer. Surface area was calculated in the relative pressure (P/P0) ranging from 0.05 to 0.20. Pore size distributions and pore volumes were derived from the N$_2$ adsorption branch using non-local density functional theory (NL–DFT). Sample was degassed at 120 °C for 12 h under vacuum (10–5 bar) before analysis.

UV-vis diffuse reflection spectrum was obtained for the dry pressed disk samples using a scanning UV-vis spectrophotometer (UV-2600, SHIMADZU, Japan) equipped with an integrating sphere assembly, using BaSO$_4$ as a reflectance sample. Fluorescent spectrum of the polymers was measured with a HITACHI F-4600 PC fluorescence spectrometer by using excitation wavelength of 467 nm at room temperature. Time-resolved fluorescence spectroscopy was performed on HORIBA Instruments FL-1000 fluorescence spectrometer. The photocurrents were recorded by an electrochemical workstation (CHI650E/700E, Shanghai) equipped with a conventional three-electrode cell. A platinum plate electrode and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively. The electrodes were immersed in a sodium sulfate electrolyte solution (0.1 M). The working electrode was illuminated by a 300 W Xe lamp (Beijing Perfect Light, PLS-SXE300) from the backside to minimize the impact of thickness of the semiconductor layer.
Cyclic voltammetry (CV) measurement was carried out on a CHI660E (Chenhua, Shanghai) electrochemical workstation in a three electrode-cell system: glassy carbon electrode as the working electrode, saturated calomel electrode (SCE) electrode as the reference electrode, platinum wire as the counter electrode. The polymer was mixed with 5 wt% chitosan, the mixture was dropped cast on a glassy carbon working electrode and let the solvent evaporate at room temperature for 4 h. The measurement was carried out in a solution of tetrabutylammonium hexafluorophosphate (0.1 M) as supporting electrolyte in acetonitrile with a scan rate of 100 mV s\(^{-1}\) in the range of -2 V to 1.5 V.

Pd contents were determined by inductively coupled plasma optical emission spectrometry (ICP-OES, IRIS Intrepid II), where the sample was digested in HNO\(_3\)/HCl (1/1, v/v) at 265 °C, then raised the temperature to 300 °C, added HClO\(_4\), then added HNO\(_3\) to extract after steaming, and diluted it by ultrapure water and filtered.
Fig. S1 Catalytic cycle of Pd-catalyzed C-H/C-X coupling that involves Pd$^0$ ↔ Pd$^{II}$ interchange (a), XPS spectra of CP1 (b) survey and (c) Pd3d.

Fig. S2 FT-IR spectra of as-prepared CPs1–4.
Fig. S3 TGA curves of as-prepared CPs1~4.

Fig. S4 DFT-optimized structures of repeat units of CPs1~4.
Fig. S5 \( \text{N}_2 \) adsorption-desorption isotherms of CPs1~4.

Fig. S6 CV curves of CPs1~4.
Fig. S7 HERs of CP1 dispersed in AA/DMF, AA/MeOH, TEOA/MeOH, Glc/DMF and Glc/MeOH water solutions under visible light irradiation.

Scheme S1. (a) Resonance structures of DMF. (b) Hydrogen bond interaction between DMF and H$_2$O.
Table S1 Summary of normalized HERs of organic & inorganic photocatalysts.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Co-catal.</th>
<th>SA</th>
<th>Illumination</th>
<th>HER (μmol g⁻¹ h⁻¹)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PyDOBT-1</td>
<td>Pt</td>
<td>TEOA</td>
<td>Full wavelength</td>
<td>12,968</td>
<td><em>Macromolecules</em> 2018, 51, 9502.</td>
</tr>
<tr>
<td>PyDOBT-1</td>
<td>-</td>
<td>TEOA</td>
<td>Visible light</td>
<td>5697</td>
<td></td>
</tr>
<tr>
<td>DBTD-CMP1</td>
<td>Pt</td>
<td>TEOA</td>
<td>Full wavelength</td>
<td>9200</td>
<td><em>ACS Catal.</em> 2018, 8, 8590.</td>
</tr>
<tr>
<td>P7</td>
<td>-</td>
<td>TEA</td>
<td>Full wavelength</td>
<td>5800</td>
<td><em>Angew. Chem.</em> 2016, 128,1824.</td>
</tr>
<tr>
<td>LDC-S-TiO₂</td>
<td>Pt</td>
<td>MeOH</td>
<td>Full wavelength</td>
<td>12,505</td>
<td><em>Adv. Sci.</em> 2018, 5, 1700870</td>
</tr>
<tr>
<td>CP1</td>
<td>-</td>
<td>AA</td>
<td>Visible light</td>
<td>15,980</td>
<td>this study</td>
</tr>
<tr>
<td>CP1</td>
<td>Pt</td>
<td>AA</td>
<td>Visible light</td>
<td>30,810</td>
<td>this study</td>
</tr>
</tbody>
</table>

Fig. S8 PHP performances of CPs1~4 (6 mg) dispersed in AA/DMF/H₂O under visible light irradiation.
**Fig. S9** Uv-vis spectrum of CP1 ultrasonically dispersed in DMF/H₂O mixed solution, and the corresponding AQY values of CP1/AA/DMF/H₂O suspension irradiated by different monochromatic light.

**Fig. S10** FT-IR spectra of CP1 before and after cycle test.
Fig. S11 Uv-vis spectra of CP1 before and after cycle test.

Fig. S12 PHP performances of CP1 (6 mg) with and without Pt-cocatalyst in AA/DMF/H₂O solutions under visible light irradiation.