Supporting Information

UV-Vis-IR irradiation driven CO$_2$ reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al$_2$O$_3$ nanosheets

Qian Zhang, Yuanzhi Li,* Shaowen Wu, Jichun Wu, Zhongkai Jiang, Yi Yang, Lu Ren, Xiujian Zhao

State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), 122 Luoshi Road, Wuhan 430070, P. R. China. E-mail: liyuanzhi66@hotmail.com

Experimental

The η value was also calculated according to the standard molar Gibbs formation energy:

$$\eta = \frac{(r_{\text{H}_2} \times \Delta G^0_{\text{H}_2} + r_{\text{CO}} \times \Delta G^0_{\text{CO}} - r_{\text{CH}_4} \times \Delta G^0_{\text{CH}_4} - r_{\text{CO}_2} \times \Delta G^0_{\text{CO}_2})}{P}$$

The values of $\Delta G^0_{\text{H}_2}$, ΔG^0_{CO}, $\Delta G^0_{\text{CH}_4}$, and $\Delta G^0_{\text{CO}_2}$ are 0, -137.2, -50.5, and -394.4 kJ mol$^{-1}$, respectively. The η value of Ni/Ni-Al$_2$O$_3$ with the focused UV-Vis-IR irradiation is 13.5%.

The η value according to ΔG^0 being less than the corresponding values according to ΔH^0 are ascribed to the following reason. As CRM is a reaction of entropy enhancement ($\Delta S_{298} = 256.6$ J K$^{-1}$ mol$^{-1}$), its ΔG_{298} (170.5 kJ mol$^{-1}$) is less than its ΔH_{298} (247 kJ mol$^{-1}$) according to the Gibbs free energy equation ($\Delta G = \Delta H - T \times \Delta S$).

For perform photocatalytic CRM on Ni/Ni-Al$_2$O$_3$ at near ambient temperature under the focused UV-Vis-IR irradiation, the reactor was put in an ice-water bath.

The thermodynamic maximum η_{max} value of our reaction system is decided by Carnot efficiency as well as the solar absorption efficiency:

$$\eta_{\text{max}} = \left[1 - \sigma \times T_{\text{H}}^4 / (I_{\text{DNI}} \times C) \right] \times \left[1 - T_{\text{L}} / T_{\text{H}} \right]$$

Where σ is Stefan–Boltzmann constant, I_{DNI} is the direct normal solar irradiation (1 kWm$^{-2}$), C is the concentration ratio of solar flux, T_{H} and T_{L} are the high and low temperatures of the equal Carnot heat engine.

In the present case, the focused UV-Vis-IR irradiation intensity was 333.8 kWm$^{-2}$ (C is equal to 333.8). The focused UV-Vis-IR irradiation resulted in the surface temperature of Ni/Ni-Al$_2$O$_3$ being rapidly raised to an equilibrium temperature ($T_{\text{H}} = 764$ °C) from room temperature ($T_{\text{L}} = 25$ °C). The η_{max} value is calculated to be 57.2%.
Figure S1. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni-Al$_2$O$_3$.
Figure S2. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni-Al₂O₃.
Figure S3. SEM image (A), TEM images (B, C), and HRTEM image (D) of Ni/Al₂O₃.
Figure S4. HAADF image (A) and the corresponding element mappings of Ni (B), Al (C), and O (D) of Ni/Al₂O₃.
Figure S5. XPS spectra of Ni2p, Al2p, and O1s in Ni-Al2O3, Ni/Al2O3, Ni/Al2O3, and the used Ni/Al2O3 catalyst after the 80 h photothermocatalytic durability test.
Figure S6. N\textsubscript{2} adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni-Al\textsubscript{2}O\textsubscript{3}.
Figure S7. N$_2$ adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Ni-Al$_2$O$_3$.
Figure S8. N$_2$ adsorption and desorption (A) and BJH adsorption pore size distribution (B) of Ni/Al$_2$O$_3$.
Figure S9. TG-MS profiles of the used catalysts of Ni/Al₂O₃ (A) and Ni/Ni-Al₂O₃ (B) after reacted for 14 and 80 h, respectively.
Figure S10. XRD patterns of the used catalysts of Ni/Al$_2$O$_3$ (A) and Ni/Ni-Al$_2$O$_3$ (B) after reacted for 14 and 80 h, respectively.
Figure S11. TEM image of the used catalysts of Ni/Al₂O₃ (A) and Ni/Ni-Al₂O₃ (B) after reacted for 14 and 80 h, respectively.
Figure S12. HRTEM image of the used Ni/Al$_2$O$_3$ catalyst after reacted for 14 h.

Figure S13. Time course of CO and H$_2$ production rates for photocatalytic CRM on Ni/Ni-Al$_2$O$_3$ at near room temperature under the UV-Vis-IR irradiation.
Figure S14. The equilibrium temperatures of Ni/Ni-Al$_2$O$_3$ under the focused Vis-IR irradiation.

Figure S15. The CH$_4$-TPD profiles of Ni/Ni-Al$_2$O$_3$ under the UV-Vis-IR irradiation and in the dark.

Figure S16. The CO$_2$-TPD profiles of Ni/Ni-Al$_2$O$_3$ under the UV-Vis-IR irradiation and in the dark.