1	Carbon nanotubes confined iron modified cathode with prominent stability and
2	activity for heterogeneous electro-Fenton
3	
4	Pei Su ^{a,b,c,d} , Minghua Zhou ^{a,b,c,d} *, Gengbo Ren ^{a,b,c,d} , Xiaoye Lu ^{a,b,c,d} , Xuedong Du ^{a,b,c,d} , Ge Song ^{a,b,c,d}
5	
6	^a Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education,
7	College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
8	^b Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution,
9	Nankai University, Tianjin 300350, China
10	^c Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control,
11	College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
12	^d Tianjin Advanced Water Treatment Technology International Joint Research Center, College of
13	Environmental Science and Engineering, Nankai University, Tianjin 300350, China
14	
15	
16	
17	
18	
19	
20	
21	

^{*} Corresponding author. Tel/Fax: +86 022 23501117. E-mail address: zhoumh@nankai.edu.cn (M. Zhou).

1 Analytical methods

2 H₂O₂ measurement: At time intervals, 0.5 mL samples were taken for analyzing. And 0.5 mL potassium titanium (IV) oxalate solution (0.05 mol/L) and 0.5 ml H₂SO₄ (3 mol/L) were added 3 into samples to analyze absorbance at λ =400 nm with the UV-vis spectrophotometer (UV759). 4 Total iron measurement: At time intervals, 1 mL samples were taken for analyzing the iron 5 concentration. And 0.5 mL buffer solution (HAc-NaAc buffer solution, pH=4.6), 0.25 ml 6 7 hydroxylamine hydrochloride (ω =1.0%) and 0.5 mL 1,10-phenanthroline monohydrat (ω =0.1%) were added into samples to analyze absorbance at λ =510 nm with the UV-vis spectrophotometer. 8 9 Hydroxyl radicals measurement ('OH): For the quantitative determination of 'OH, dimethyl sulfoxide (DMSO, 0.2%) was first trapped in solution. And 1 mL samples were taken for 10 analyzing. 2, 4-dinitrophenylhydrazine (DNPH, 0.2 mL), and phosphate buffer solutions (pH=4, 11 12 1.25 mL) were added into samples to form the corresponding hydrazine (HCHO-DNPH), which was determined by high performance liquid chromatography (Ultimate 3000, ThermoFisher, 13 America) equipped with a BEH C18 column at a flow rate of 0.1 mL/min (1.7 μ m, ϕ 2.1×100 mm). 14 15 The mobile phase was methanol/water (% V/V = 60: 40) and 355 nm was chosen for detection. Pollutants removal measurement: The experiments of phenol removal were performed at 16 current of 60 mA. 0.5 mL sample was taken to analyze pollutants removal a time intervals. It was 17 18 determined by same HPLC equipped with C18 column (3 μ m, ϕ 3.0×100 mm) and DAD detector at 0.3 mL/min. The mobile phase was methanol/water/glacial acetic acid ($\sqrt[6]{V/V} = 30$: 19: 1) 19 20 and 280 nm was chosen for detection.

21 Electric energy consumption (EEC) could be calculated by the following formula:¹

$$EEC = \frac{1000Ult}{CV_s}$$
(1)

1 Where U is the voltage (V), I is the current (A), t is the time (h), V_s is the bulk volume (L), and C
2 is the concentration of H₂O₂ (mg/L).

3 Exchange current density:

4 The exchange current density (i_0) was calculated from the Tafel equation: ¹

5
$$lg(\frac{i}{i_0}) = \frac{\beta F \eta}{2.303 RT}$$
(2)

6 Where η is the cathodic overpotential (V), R is the ideal gas constant (8.31 J/mol•K), T is the
7 absolute temperature (K), β is the symmetry factor (a constant), F is the Faraday constant (96485
8 C/mol), i is the current density (mA/m²) and i₀ is the exchange current density (mA/m²). The
9 linear Tafel regression (R²≥0.99) exists in the overpotential interval of 80 and 100 mV.
10
11
12
13

Figure S7 Phenol removal by CNT modified GDE when H₂O₂ was electro-synthesized Conditions: V=300 ml, pH=3, I=60 mA, V_{air}=0.4 L/min, [Phenol]=50 mg/L

Figure S10 Phenol removal efficiency of Fe⁰-in-CNTs GDE at neutral condition.

3 Condition: V=300 ml; pH=7; I=60 mA; V_{air}=0.4 L/min; phenol concentration: 50 mg/L

Figure S11 pH change when phenol was removed at neutral condition by Fe⁰-in-CNTs GDE.

- Ũ

1

2 Table S1 Electrochemical parameters for the ORR, EIS and polarization curve

	ORR			EIS			Tafel			
Materials	Reduction peaks (V vs Ag/AgCl)	Current density (mA/cm ² , -0.8 V) at 1600 rpm	R ₀ (Ω)	Rct (Ω)	R _d (Ω)	E _{corr} (mV)	i _{corr} (mA/cm²)	C _R (mm/a)	i ₀ (A/cm ²)	
CNTs	-0.419	3.74	9.13	8.37	11.79	-	-	-	8.8×10 ⁻³	
Fe-in-CNTs	-0.459	3.96	6.04	3.45	48.58	-144	0.247	2.86	0.18	
Fe-out-CNTs	-0.376	4.50	6.10	3.59	38.08	-52	0.525	6.09	0.17	
Fe ⁰ -in-CNTs	-0.432	4.92	5.95	1.57	8.27	-189	0.170	1.97	0.15	
Fe ⁰ -out-CNTs	-0.391	3.90	6.33	3.06	10.70	-182	0.501	5.81	0.11	
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										

	Experimental	Iron leaching mass	EEC	Pollutant	Ref.	
Cathode material	Conditions	(mg/cm ² , ×10 ⁻³)	(kWh/kg _{H2O2})	Removal		
Fe@Fe ₂ O ₃ /active	Anode: BDD; pH=3;	18.2		(30 mg/L Atrazine) 100	2	
carbon fiber	I=30 mA; t=60 min	18.2	-	%		
Fe@Fe2O3/active	Anode: Bi ₂ WO ₆ /FTO electrode; pH=6.2;			(1.0×10 ^{−5} M		
carbon fiber	Light source=300 W; V _{air} =5 L/min;	60.0	-	(1.0×10 ⁴ M Rhodamine B) 46.9 %	3	
carbon noci	I=0.3 mA;t=120 min;			Knoudmine D) 40.9 /0		
Fe ₃ O ₄ /gas diffusion	Anode: Pt sheet; pH=3	460	_	(50 mg/L Tetracycline)	4	
cathode	Cathode potential=-0.8 V; t=100 min;	400	-	94.2 %		
Fe ₃ O ₄ @Fe ₂ O ₃ /activated	Anode: BDD; pH=3; Current			(236.7 mg/L	5	
carbon aerogel	density=10mA/cm ² ; t=30 min;	180	-	Imidacloprid) 90 %		
euroon ueroger	Pure oxygen=0.02m ³ /h;					
FeCu/Carbon aerogel	Anode: BDD; pH=3; V=50 ml; t=60 min;	3.75	348	(50 mg/L dimethyl	6	
	I=30 mA; U=5.8 V; V _{air} =100 mL/min;	5.10	510	phthalate) 93 %	0	
Fe ^{II} Fe ^{III} layered double	Anode: Ti ₄ O ₇ anode; pH=3; V _{air} =1			(0.2 mM Sulfamethazine)		
hydroxide multiwall	L/min;	52.0	-	100 %	7	
,	t=50 min; Current density=7.5 mA/cm ² ;					
	Anode: DSA; V=300 ml	(pH=3) 3.21	32.80	(50 mg/L phenol) 91.12		
Fe ⁰ -in-CNTs	t=60 min; V=300 ml; I=60 mA; V _{air} =0.4	(r-2 0) 0.21		%	This	
	L/min: t=120 min				work	

1 Table S2. Performance comparison of iron modified carbon materials with the literature.

- 2 -: not available
- 3

4 References:

- 5 1. D. Li, Y. Qu, J. Liu, W. He, H. Wang and Y. Feng, Y. J. Power Sources, 2014, 272, 909-914.
- 6 2. X. Ding, S. Wang, W. Shen, Y. Mu, L. Wang, H. Chen and L. Zhang, Water Res., 2017, 112, 9-18.
- 7 3. X. Ding, Z. Ai and L. Zhang, J. Hazard. Mater., 2012, 239, 233-40.
- 8 4. Y. Zhang, M. Gao, S.-G. Wang, W. Zhou, Y. Sang and X.-H Wang, *Electrochim. Acta*, 2017, 231,
- 9 694-704.
- 10 5. H. Zhao, Y. Chen, Q. Peng, Q. Wang and G. Zhao, Appl. Catal. B, 2017, 203, 127-137.
- 11 6. H. Zhao, L. Qian, Y. Chen, Q. Wang and G. Zhao, Chem. Eng. J., 2018, 332, 486-498.
- 12 7. S. Ganiyu, T. Huong Le, M. Bechelany, N. Oturan, S. Papirio, G. Esposito, E. Hullebusch, M.
- 13 Cretin and M. A. Oturan, Chem. Eng. J., 2018, 350, 844-855.
- 14
- 15
- 16