Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Alloying in inverse CeO₂/Pd nanoparticles to enhance the electrocatalytic

activity of formate oxidation reaction

Quan Tang ^{a,b}, Fuyi Chen ^{*,a,b}, Tao Jin ^{a,b}, Longfei Guo ^{a,b}, Qiao Wang ^{a,b} and Huazhen Liu ^{a,b}

a. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, China.

b. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

*Corresponding author. fuyichen@nwpu.edu.cn (Fuyi Chen)

Figure S1. SEM images with different magnifications and the corresponding EDS of the various PdCe/C catalysts. (a) Pd/C, (b) $Pd_{72}Ce_{28}/C$, (c) $Pd_{63}Ce_{37}/C$, (d) $Pd_{46}Ce_{54}/C$ and (e) Ce/C.

Figure S2. TEM images with different magnifications and the corresponding EDX of Pd/C catalyst. (a) TEM image of Pd/C catalyst. (b) HAADF image and EDX elemental mapping of Pd/C catalyst. (c) TEM image of the carbon supported Pd nanoparticles. (d) The high-resolution TEM image of the carbon supported Pd nanoparticles. The interplanar spacing of the carbon supported Pd nanoparticles could be marked in the image.

Figure S3. Electrochemical performance of $Pd_{72}Ce_{28}/C$ catalysts for the methanol oxidation reaction. (a) CV curves of $Pd_{72}Ce_{28}/C$ and the commercial Pd/C catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with 1 M CH₃OH solution normalized by the mass of Pd. (b) CA curves at 0.45 V in N₂-saturated 1 M KOH with 1 M CH₃OH solution.

Figure S4. Cycle stability of $Pd_{72}Ce_{28}/C$ catalysts for the formate oxidation reaction. CV curves at different cycle times of (a) $Pd_{72}Ce_{28}/C$ catalyst and (b) the commercial Pd/C catalyst at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with 1 M CH₃OH solution normalized by the mass of Pd.

Figure S5. (a) ECSA of $Pd_{72}Ce_{28}/C$ catalyst compared to other PdCe/C catalysts and commercial Pd/C catalyst. (b) ECSA of PdM/C (M = Co, Cu, Ni, Ag) catalysts and $Pd_{72}Ce_{28}/C$ catalyst. All ECSAs are obtained by integrating the reduction peak area of Pd in the CV curves.

Figure S6. Electrochemical performance of Pd+CeO₂/C mixture catalysts for the formate oxidation reaction. (a) CV curves of Pd/C mix with various percentage CeO₂ catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH solution. (b) ECSA of Pd/C mixed with various percentages CeO₂ catalysts. (c) CV curves of Pd/C mixed with various percentages CeO₂ catalysts. (c) CV curves of Pd/C mixed with various percentages CeO₂ catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with 1 M HCOOK solution normalized by the mass of Pd. (d) CA curves at 0.45 V in N₂-saturated 1M KOH with 1 M HCOOK solution.

Figure S7. Electrochemical performance of $Pd_{72}Ce_{28}+CeO_2/C$ mixture catalysts for the formate oxidation reaction. (a) CV curves of $Pd_{72}Ce_{28}/C$ mixed with various percentages CeO_2 catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH solution. (b) ECSA of $Pd_{72}Ce_{28}/C$ mixed with various percentages CeO_2 catalysts. (c) CV curves of $Pd_{72}Ce_{28}/C$ mix with various percentage CeO_2 catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with various percentage CeO_2 catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with 1 M HCOOK solution normalized by the mass of Pd. (d) CA curves at 0.45 V in N₂-saturated 1M KOH with 1 M HCOOK solution.

Figure S8. (a) CV curves of CeO₂/C catalyst at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH solution and 1 M KOH with 1 M HCOOK solution normalised by the geometric area. (b) CV curves of Pd₇₂Ce₂₈/C, CeO₂/C and the commercial Pd/C catalysts at the scan rate of 50 mV·s⁻¹ in N₂-saturated 1 M KOH with 1 M HCOOK solution normalised by the geometric area. (c) Full-range XRD patterns for the as-prepared CeO₂/C catalyst (black line), the CeO₂/C catalysts after 20 CV cycles in 1 M KOH solution (red line) and the CeO₂/C catalysts after 20 CV cycles 1 M KOH with 1 M HCOOK solution (blue line). The standard XRD patterns for CeO₂ are also provided for reference. (d) High-resolution XPS spectrum of the Ce 3d region for the as-prepared CeO₂/C catalyst, the CeO₂/C catalysts after 20 CV cycles in 1 M KOH solution.

Catalyst	$Pd(NO_3)_2 \cdot 2H_2O$	$Ce(NO_4)_3 \cdot 6H_2O$	EDS composition (wt. %)		Atomic ratio (%)	
name	(mM)	(mM)	Pd	Ce	С	Pd/Ce
Pd/C	13.3	0	25.0	0	75.0	100/0
$Pd_{72}Ce_{28}/C$	10.0	3.3	17.3	8.7	74.0	72/28
Pd ₆₃ Ce ₃₇ /C	6.6	6.6	12.6	9.7	77.7	63/37
$Pd_{46}Ce_{54}/C$	3.3	10.0	6.9	10.7	82.4	46/54
Ce/C	0	13.3	0	11.8	88.2	0/100

Table S1. Molar ratios of metal precursors during the synthetic process and the EDS composition for different PdCe/C catalysts and the pure monometallic counterparts.

Table S2. The XPS surface composition of element Pd in $Pd_{72}Ce_{28}/C$ catalyst and the pure Pd/C counterpart.

Catalyst			Pd			Pd ²⁺	
name		3d _{5/2}	3d _{3/2}	Total	3d _{5/2}	3d _{3/2}	Total
Pd/C	BE (eV)	335.7	340.9		336.5	342.3	
	Content (at %)	46.1	32.8	78.9	13.0	8.1	21.1
Pd ₇₂ Ce ₂₈ /C	BE (eV)	335.9	341.2		337.8	343.2	
	Content (at %)	52.0	35.4	87.4	5.3	7.3	12.6

BE: XPS binding energy.

Catalyst	Electrolyte	Scan rate (mV·s⁻¹)	Specific activity (mA·cm ⁻²)	Mass activity (A∙mg _{Pd} -¹)	Reference
Pd ₇₂ Ce ₂₈ /C	1.0 M KOH + 1.0 M HCOOK	50	19.4	1.1	This work
PdH/C	1.0 M KOH + 0.1 M HCOOK	20	0.1	NA	1
Pd₄Ag/C	1.0 M NaOH + 0.1 M HCOONa	50	NA	0.04	2
PdCu/C	1.0 M KOH + 1.0 M HCOOK	30	3.5	NA	3
PdAu/Ni foam	0.5 M NaOH + 0.1 M HCOONa	50	0.8	NA	4
CuPdAu/C	0.5 M KOH + 0.5 M HCOOK	50	NA	1.2	5
PdAgCu aergels	1.0 M KOH + 1.0 M HCOOK	50	10.1	2.7	6
PdAgPt aerogels	0.5 M KOH+ 0.5 M HCOOK	50	3.5	2.9	7
Pd _{2.3} Co/C	1.0 M KOH + 1.0 M HCOOK	50	NA	2.5	8
PdNi/C	1.0 M KOH + 1.0 M HCOOK	50	12.0	4.5	9
PdRh/C	1 M KOH + 1.0 M HCOOK	50	8.1	4.5	10
Pt-Ag	1 M KOH+ 1.0 M HCOOK	50	NA	0.8	11

Table S3. A literature survey of the activity of Pd-based and Pt-based FOR catalysts in alkaline media.

Table S4. The alloy formation energy, d-band center and Mulliken charge distribution for all slab models, including Pd (111), Pd_3Ce_1 (111), Pd_1Ce_1 (111), Pd_1Ce_3 (111), and Ce (111) surface.

Alloys	Pd	Pd ₃ Ce ₁	Pd ₁ Ce ₁	Pd ₁ Ce ₃	Ce
Total Energy (eV)	-71137.39018	-60682.20106	-50209.89984	-39744.31303	-29274.87698
Formation Energy (eV)		-10.44	-3.77	-3.81	
d-band center (eV)	-2.02	-2.78	-2.59	-1.42	-0.75
Mulliken charge analysis		0.932 (0.990 (0.932) 0.912 (0.910 (0.932) 0.932 (0.910 (0.933)	0.707 0.707 0.707 0.707 0.707 0.707	0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247	0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Table S5. The binding energy for H, CO_2 and HCOO on Pd_3Ce_1 (111) surface compare to Pd (111) surface.

Alloys	н	CO ₂	нсоо
Pd (111)	-2.47 eV	-0.57 eV	-2.6 eV
Pd ₃ Ce ₁ (111)	-1.04 eV	-0.22 eV	-1.99 eV

Table S6. Hydrogen binding energy (HBE), potential limiting barrier and catalytic activity on the Pd₃Ce₁ (111) and Pd (111) surfaces.

Surface	HBE	ΔG_3	Catalytic activity
Pd (111)	-2.47 eV	0.74 eV	0.29 A⋅mg _{Pd} ⁻¹
Pd ₃ Ce ₁ (111)	-1.04 eV	0.23 eV	1.12 A⋅mg _{Pd} ⁻¹

 ΔG_3 denotes the change of free energy for the reaction step (3).

References

- 1. M. Choun, K. Ham, D. Shin, J. K. Lee and J. Lee, *Catalysis Today*, 2017, **295**, 26-31.
- 2. S. Roy Chowdhury, S. Ghosh and S. K. Bhattachrya, *Electrochimica Acta*, 2017, **225**, 310-321.
- 3. J. Noborikawa, J. Lau, J. Ta, S. Hu, L. Scudiero, S. Derakhshan, S. Ha and J. L. Haan, *Electrochimica Acta*, 2014, **137**, 654-660.
- 4. Y. Li, Y. He and W. Yang, *Journal of Power Sources*, 2015, **278**, 569-573.
- 5. H. Mao, T. Huang and A. Yu, *International Journal of Hydrogen Energy*, 2016, **41**, 13190-13196.
- 6. Q. Wang, F. Chen, L. Guo, T. Jin, H. Liu, X. Wang, X. Gong and Y. Liu, *J. Mater. Chem. A*, 2019, DOI: 10.1039/C9TA00664H.
- 7. J. Wang, F. Chen, Y. Jin, L. Guo, X. Gong, X. Wang and R. L. Johnston, *Nanoscale*, 2019, DOI: 10.1039/C9NR03266E.
- 8. S. Sankar, G. M. Anilkumar, T. Tamaki and T. Yamaguchi, *ACS Applied Energy Materials*, 2018, **1**, 4140-4149.
- 9. S. Sasidharan, G. M. Anilkumar, T. Tamaki and T. Yamaguchi, *ChemCatChem*, DOI: 10.1002/cctc.201900960.
- 10. J. Bai, Q. Xue, Y. Zhao, J.-X. Jiang, J.-H. Zeng, S.-B. Yin and Y. Chen, ACS Sustainable Chemistry & Engineering, 2019, **7**, 2830-2836.
- 11. S.-H. Han, H.-M. Liu, J. Bai, X. L. Tian, B. Y. Xia, J.-H. Zeng, J.-X. Jiang and Y. Chen, *ACS Applied Energy Materials*, 2018, **1**, 1252-1258.