Highly Stable One-Dimensional Pt Nanowires with Modulated Structural Disorder towards Oxygen Reduction Reaction.

Fanpeng Kong^{1, 2}, Mohammad Norouzi Banis², Lei Du¹, Lijie Zhang³, Lei Zhang², Junjie Li²,

Kieran Doyle-Davis², Jianneng Liang², Qingsong Liu¹, Xiaofei Yang², Ruying Li², Chunyu Du¹,

Geping Yin1*, Xueliang Sun2*

¹MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,

Harbin Institute of Technology, 150001, China.

²Department of Mechanical and Materials Engineering, University of Western Ontario, London,

ON N6A 5B9, Canada.

³Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Corresponding author: xsun9@uwo.ca, yingphit@hit.edu.cn

Figure S1. (a)TEM image and (b) HAADF-STEM image of Pt NWs. The scale bar is 20 nm.

Figure S2. (a)TEM image and (b) HAADF-STEM image of PtNi NWs. The scale bar is 20 nm.

Figure S3. (a)TEM image and (b) HAADF-STEM image of D-O₂-Pt NWs. The scale bar is 20 nm

Figure S4. (a)TEM image and (b) HAADF-STEM image of D-Ar-Pt NWs. The scale bar is 20 nm

Figure S5. (a) The CV curve of 1^{st} cycle of D-Ar-Pt NWs in oxygen saturated 0.1 M NaOH. (b) The CV curve of 50^{th} cycle of D-Ar-Pt NWs in oxygen saturated 0.1 M NaOH. (c) The CV curve of 50^{th} cycle of D-O₂-Pt NWs in oxygen saturated 0.1 M NaOH.

Figure S6. Tafel plots of Pt/C, Pt NWs and D-O₂-Pt NWs for ORR.

Figure S7. Tafel plots of Pt/C and D-O₂-Pt NWs of MEA for H₂-air fuel cells.

Figure S8. Polarization curves of Pt NWs in oxygen saturated 0.1 HClO_4 before and after 30 000 and 50 000 potential cycles between 0.6 and 1.0 V versus RHE.

Figure S9. Polarization curves of Pt/C in oxygen saturated 0.1 HClO_4 before and after 30 000 and 50 000 potential cycles between 0.6 and 1.0 V versus RHE. The insert image is the HAADF-STEM image of Pt/C after stability test.

Figure S10. CV of Pt/C (a), Pt NWs (b) and D-O₂-Pt NWs (c) before and after stability test in Ar saturated 0.1 M HClO₄. (d) Electrochemical surface area of Pt/C, Pt NWs and D-Pt NWs before and after stability test.

Figure S11. Bar chart of specific activity of Pt/C, Pt NWs and D-O₂-Pt NWs before and after stability test.

Figure S12. CO stripping curves on Pt/C (a), Pt NWs (b)and D-O₂-Pt NWs (c) after 30 k and 50 k cycles. (d) The relationship between mass activity at 0.9 V and density of defects, estimated by average CO oxidation potential after 50 k cycles.

Table S1. Peak position of Pt 4f and relative content of Pt metallic and oxidized state in Pt NWs, PtNi NWs and D-O₂-Pt NWs.

$\frac{1}{10000000000000000000000000000000000$	Relative content	
	(II) / %	
Pt NWs 71.27 74.62 77	23	
PtNi NWs 70.85 74.2 75	25	
D-O ₂ -Pt NWs 71.26 74.6 69	31	

Table S2. Activity and stability for ORR of D-O₂-Pt NWs in this work and several results of representative Pt based catalysts from recent published work.

Catalysts	Mass activity (A mg ⁻¹ Pt)	Performance loss	Cycles	Reference
H-PtFe@NC	0.99	27%	20k	Ref 1
Rh doped Pt-Ni octahedra	0.82	12.20%	8k	Ref 2
Pt ₁ Ni ₁ octahedra	1.6	60%	4k	Ref 3
Octahedral Pt nanocages	0.75	36%	10k	Ref 4
$Pd_xNi_{(1-x)} @Pt_{ML} \\$	1.45	11.50%	12k	Ref 5
Pt _{2.5} Ni octahedra	3.3	40	5k	Ref 6
Pd@Pt nanoparticles	0.78	17.90%	10k	Ref 7
PtNi nanoparticles	0.8	45%	10k	Ref 8
PtNiCo octahedra	0.5	50%	4k	Ref 9
ALD ZrO2@Pt/NCNT	0.28	8%	4k	Ref 10
Mo-Pt ₃ Ni octahedra	6.98	5.50%	8k	Ref 11
Rh-Pt nanowires	1.41	9.20%	10k	Ref 12
Pt nanoplate	1.62	28%	10k	Ref 13
L ₁₀ FePt/Pt	0.71	3%	10k	Ref 14
Pd@Pt concave decahedra	1.6	55%	10k	Ref 15
Pt icosahedra	1.28	40%	5k	Ref 16
Pd@Pt2.7L icosahedra	0.64	44%	10k	Ref 17
Pt skin@Pt3Ni	0.68	30%	10k	Ref 18
Pt/N-ALDTa ₂ O ₅ /C	0.28	10%	10k	Ref 19
Pd@Pt _{2-3L} octahedra	0.48	28%	10k	Ref 20
D-O ₂ -Pt NWs	0.86	17%	50k	This work

Reference

1. Wang, Q.; Chen, S.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W.; Li, Y.; Li, L.; Wei, Z., Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect. *Advanced materials* **2016**, *28* (48), 10673-10678.

Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger,
M. G.; Strasser, P., Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between
Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. *Nano letters* 2016, *16* (3), 1719-25.

3. Chunhua Cui, L. G., Marc Heggen, Stefan Rudi and Peter Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. *Nature materials* **2013**, *12*.

Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S. I.; Park, J.; Herron, J. A.; Xie,
Z.; Mavrikakis, M.; Xia, Y., Platinum-based nanocages with subnanometer-thick walls and well-defined,
controllable facets. *Science* 2015, *349* (6246), 412-6.

5. Luo, L.; Zhu, F.; Tian, R.; Li, L.; Shen, S.; Yan, X.; Zhang, J., Composition-Graded PdxNi1–x Nanospheres with Pt Monolayer Shells as High-Performance Electrocatalysts for Oxygen Reduction Reaction. *ACS Catalysis* **2017**, *7* (8), 5420-5430

Choi, S. I.; Xie, S.; Shao, M.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.;
Xia, X.; Wang, J.; Kim, M. J.; Xia, Y., Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. *Nano letters* 2013, *13* (7), 3420-5.

 Zhang, L.; Zhu, S.; Chang, Q.; Su, D.; Yue, J.; Du, Z.; Shao, M., Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid. *ACS Catalysis* 2016, *6* (6), 3428-3432.

8. Gan, L.; Heggen, M.; O'Malley, R.; Theobald, B.; Strasser, P., Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. *Nano letters* **2013**, *13* (3), 1131-8.

9. Aran-Ais, R. M.; Dionigi, F.; Merzdorf, T.; Gocyla, M.; Heggen, M.; Dunin-Borkowski, R. E.; Gliech, M.; Solla-Gullon, J.; Herrero, E.; Feliu, J. M.; Strasser, P., Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts. *Nano letters* **2015**, *15* (11), 7473-80.

10. Cheng, N.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R.; Ye, S.; Knights, S.; Sun, X., Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area-Selective Atomic Layer Deposition for the Oxygen Reduction Reaction. *Advanced materials* **2015**, *27* (2), 277-281.

Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.;
Duan, X.; Mueller, T.; Huang, Y., High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. *Science* 2015, *348* (6240), 1230-4.

12. Huang, H.; Li, K.; Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.; Yang, J.; Peng, Z.; Zeng, J., Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. *Journal of the American Chemical Society* **2017**, *139* (24), 8152-8159.

13. Liu, H.; Zhong, P.; Liu, K.; Han, L.; Zheng, H.; Yin, Y.; Gao, C., Synthesis of ultrathin platinum nanoplates for enhanced oxygen reduction activity. *Chemical science* **2018**, *9* (2), 398-404.

14. Li, J.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z.; Shen, B.; Kim, Y. S.; Zhang, P.; Sun, S., Fe Stabilization by Intermetallic L10-FePt and Pt Catalysis Enhancement in L10-FePt/Pt Nanoparticles for Efficient Oxygen Reduction Reaction in Fuel Cells. *Journal of the American Chemical Society* **2018**, *140* (8), 2926-2932.

15. Wang, X.; Vara, M.; Luo, M.; Huang, H.; Ruditskiy, A.; Park, J.; Bao, S.; Liu, J.; Howe, J.; Chi, M.; Xie, Z.; Xia, Y., Pd@Pt Core-Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability. *Journal of the American Chemical Society* **2015**, *137* (47), 15036-42.

16. Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J.; Xie, Z.; Xia, Y., Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. *Nano letters* **2016**, *16* (2), 1467-71.

Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron,
J. A.; Mavrikakis, M.; Xia, Y., Palladium-platinum core-shell icosahedra with substantially enhanced activity
and durability towards oxygen reduction. *Nature communications* 2015, *6*, 7594.

Zhang, B.-W.; Zhang, Z.-C.; Liao, H.-G.; Gong, Y.; Gu, L.; Qu, X.-M.; You, L.-X.; Liu, S.; Huang,
L.; Tian, X.-C.; Huang, R.; Zhu, F.-C.; Liu, T.; Jiang, Y.-X.; Zhou, Z.-Y.; Sun, S.-G., Tuning Pt-skin to Nirich surface of Pt 3 Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. *Nano Energy* 2016, *19*, 198-209.

Song, Z.; Banis, M. N.; Zhang, L.; Wang, B.; Yang, L.; Banham, D.; Zhao, Y.; Liang, J.; Zheng, M.;
Li, R.; Ye, S.; Sun, X., Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. *Nano Energy* 2018, *53*, 716-725.

Park, J.; Zhang, L.; Choi, S. I.; Roling, L. T.; Lu, N.; Herron, J. A.; Xie, S. F.; Wang, J. G.; Kim, M. J.; Mavrikakis, M.; Xia, Y. N., Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction. *ACS nano* 2015, *9* (3), 2635-2647