Supporting Information

Boosting Zn-ion Storage Capability of Birnessite Manganese Oxide Nanoflorets by La$^{3+}$ Intercalation

Haozhe Zhang,a,b Qiyu Liu,b Jing Wang, b Kunfeng Chen,a Dongfeng Xue,a Jie Liu,c,* and Xihong Lu*a,b,d

aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
E-mail: luxh6@mail.sysu.edu.cn

bMOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.

cCollege of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.

dInstitute Zhongshan Huashun Science and Technology Co., Ltd. Zhongshan 528400, PR China.
Fig. S1 HRTEM image of the MO.

Fig. S2 XPS spectra of LMO. (a) Mn 2p; (b) O1s.
Fig. S3 Comparing XPS spectra between the MO and LMO. (a) Mn 2p; (b) O1s.

Fig. S4 Raman spectra of the MO and LMO.
Fig. S5 Atom% of LMO samples with different La$^{3+}$ contents.

Fig. S6 SEM image of (a-b) LMO-0.6; (c-d) LMO-1.7.
Fig. S7 XRD patterns of LMO samples with different La$^{3+}$ contents.

Fig. S8 GCD curves of (a) MO; (b) LMO-0.6; (c) LMO-1.5; (d) LMO-1.7.