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Experimental Section

Materials. PM6, Y6, SM1, PDINO were purchased from Solarmer Materials Inc., 

PEDOT:PSS (Clevios P VP 4083) was obtained from J&K Chemicals Inc. 1-

chloronaphthalene (CN), Chloroform (CF) and other drying solvent were bought from 

Aldrich Inc. The indium-doped tin oxide (ITO)-coated glass (1.1 mm thick, ≤15 

Ω/square) were purchased from Wuhu Token Sciences Co., Ltd. PET flexible substrates 

were purchased from South China Xiangcheng Technology Co., Ltd.

Characterizations. The UV-vis absorption spectrums test was done in the 

Spectrophotometer (Perkin-Elmer Lambda 950). Photoluminescence spectroscopy was 

accomplished on a fluorescence spectrometer (FL3-111, Horiba). The current-voltage 

(J-V) under AM 1.5 G irradiation and electrical conductivity test in the dark were done 

in the Keithley 2440 source meter with a solar simulator (Newport-Oriel® Sol3A 

450W) device and calibrated by a standard Si solar cell. The external quantum 

efficiency (EQE) spectrums were conducted by the solar cell QE tester (QE-R, Enli 

Technology Co., Ltd) which was calibrated with a 75W xenon lamp source standard 

probe. Veeco Dimension 3100V atomic force microscope was used to do the surface 

morphology and phase diagram test. XEUSS SAXS/WAXS equipment were employed 

to complete the grazing-incidence wide-angle X-ray scattering (GIWAXS) analyses.

1. Cyclic voltammetry (CV) test

Figure S1. CV test results of (a) SM1 (b) PM6 and (c) Y6, respectively.

Cyclic voltammetry (CV) was used to calculate the energy levels of SM1, PM6 

and Y6, Ag/AgCl was used as the reference electrode in anhydrous CH3CN solution 

and ferrocene/ferroce-nium (Fc/Fc+) was used as internal reference. The following 

equations were employed to calculate the HOMO and LUMO:



HOMO= - [EOX + (4.8 - EFC)] eV

LUMO= - [Ered + (4.8 - EFC)] eV

Where EOX is the onset of oxidation and the Ered relates to the reduction potential, 

respectively. SM1 exhibits the HOMO and LUMO levels of PM6 are calculated to be -

5.25 and -3.33 eV, PM6 exhibits the HOMO and LUMO levels of PM6 are calculated 

to be -5.50 eV and -3.56 eV, The HOMO and LUMO levels of Y6 are -5.70 and -4.10 

eV, respectively.

2. J-V and EQE results of optimized ternary devices

Figure S2. (a) J-V curves and (b) EQE spectrum based on PM6:SM1:Y6 ternary devices containing 
15 wt% SM1 in donors.

3. Histograms of PCEs 

Figure S3. Histograms of PCEs counts for 18 individual devices based on optimal ternary OSCs.

4. Stability of the devices



Figure S4. Stability of PM6:Y6 and PM6:SM1:Y6 with 15% SM1 devices tested in the glovebox 
without encapsulation. 

The stability of PM6:Y6 binary and PM6:SM1:Y6 ternary OSCs within 70 h were 

tested and shown in Figure S4. The devices were kept in the glovebox filled with 

nitrogen and without illumination. The Voc almost kept identical while the FF and Jsc 

decreased to a certain extent in both binary and ternary devices. The PCE in PM6:Y6 

binary systems dropped to around 75% of the original value while in PM6:SM1:Y6 

ternary systems the PCE still remained over 80% of the original value, indicating that 

adding the third component small molecular donor may be beneficial for the stability 

of PM6:Y6 based systems.

5. Hole and electron mobility

Figure S5. The J0.5-V curves of the PM6:SM1:Y6 based ternary devices by adding different ratio 
of. (a) electron-only devices in a structure of ITO/Al/active layer/PDINO/Al. (b) hole-only devices 
in a structure of ITO/PEDOT:PSS/active layer/MoO3/Al. (c) electron mobility (μe), hole mobility 
(μh) and μe/μh in ternary blend with different ratio of two donors and acceptor.



The space charge limited current (SCLC) method were employed to investigated 

the carriers mobility of binary and ternary organic solar cells, the structure of the hole-

only and electron-only devices were ITO/PEDOT:PSS/active layer/MoO3/Al and 

ITO/Al/active layer/PDINO/Al, respectively.

The carrier mobilities (as shown in Figure S5) were calculated by fitting the Mott-

Gurney square law:

JSCLC =
9
8
ε0εrμe

V2

L3

Figure S5a-b shows the J0.5-V curves of binary and ternary devices. As shown in 

Figure 5c, the hole and eletron mobilities shows relatively low hole mobility (µh) (2.77 

× 10−4 cm2 V−1 s−1) and electron mobility (µe) (6.44× 10−4 cm2 V−1 s−1) in the PM6:Y6 

binary, the hole and electron mobilities increased as SM1 was addded. After the content 

of SM1 was above 15%, the mobilities started to decrease and the SM1:Y6 binary 

systems showed the lowest hole and electron mobilites. The ratios of μe/μh which refer 

to the balance of the charge transport and showed lowest value of 1.61 as the content 

of SM1 was around 15 wt% indicated that the charge transport of hole and eletron were 

well balanced thus leading to the increase of Jsc and FF.

6. Absorption and PL spectrum of SM1 film

Figure S6. The absorption spectrum of PM6 film and PL spectrum of SM1 film.



7. GIWAXS characterization

Figure S7. GIWAXS images of (a) SM1 and (b) Y6 neat films, (c) GIWAXS intensity profiles 
along the in-plane (dotted line) and out-of-plane (solid line) directions for the neat films of PM6 
and Y6.

The GIWAXS images of SM1 and Y6 neat films are shown in Figure S7a-b, and 

the GIWAXS intensity profiles along the in-plane (dotted line) and out-of-plane (solid 

line) directions for the neat films of SM1and Y6 are shown in Figure S7c. GIWAXS 

images and intensity profiles of Y6 were obtained from our previous work (Advanced 

Materials, 2019, 31, 1902210). There exist (100) peaks along qz in 0.294 Å−1 in the 

lamellar diffractions and π-π stacking diffractions along qxy in 1.718 Å−1 indicating that 

the SM1 had a preference of edge-on orientation. In addition, Y6 exhibited a strong 

peak in 0.299 Å−1 along the in-plane direction and 1.76 Å−1 along the out-of-plane 

direction, which tends to form face-on orientation.



8. AFM characterization of blend films

Figure S8. AFM images (2×2m) of PM6:SM1:Y6 based systems with different blending contents 
of SM1.


