High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties

Supporting information

Chaoqiong Zhua, Ziming Caia, Bingcheng Luoa,b, Limin Guoc, Longtu Lia, Xiaohui Wanga,1

a State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

b Department of Engineering, University of Cambridge, CB30FA Cambridge, United Kingdom

c School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Dr. Z. Cai and Dr. C. Zhu contribute equally to this work.

1Author to whom correspondence should be addressed: wxh@mail.tsinghua.edu.cn
1. Hysteresis loops and current-electric-field relations

Figure S1. $P-E$ loops of the (1-x)BNTSZ-xNN ceramics with x of (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, measured under various applied electric fields at room temperature, 1Hz.
Figure S2. The current-electric-field relations corresponding to (a) to (d) of Figure S1.
Figure S3. The temperature-dependent P-E loops of the (1-x)BNTSZ-xNN ceramics with x of (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, measured at the temperature range from 30 °C to 180 °C under the applied electric field of 120 kV/cm at 1 Hz.
Figure S4. The remanent polarization and maximum polarizations as functions of temperature of these BNTSZ-NN ceramics extracted from Figure S3.
Figure S5. The current-electric-field relations corresponding to (a) to (d) of Figure S3.
Figure S6. \(P-E \) loops of the (1-x)BNTSZ-xNN ceramics with x of (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, measured under various applied electric fields at 120 °C, 1Hz.
Figure S7. The current-electric-field relations corresponding to (a) to (d) of Figure S6.
2. Gaussian–Lorentzian fitting of Raman spectra

Figure S8. Fitting of Raman spectra of the 0.8BNTSZ-0.2NN ceramic according to the Gaussian–Lorentzian function at the measured temperature of (a) 0 °C, (b) 25 °C, (c) 100 °C, (d) 250 °C.