Supporting Information

Stable artificial solid electrolyte interphase film for lithium metal anode via metal organic frameworks cemented by Polyvinyl alcohol

Lishuang Fan,^{a,b,†} Zhikun Guo,^{a,†} Yu Zhang,^{a*} Xian Wu, ^a Chenyang Zhao,^a Xun Sun,^a Guiye Yang,^a Yujie Feng,^a Naiging Zhang^{a,b,*}

^aState Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China ^bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, China

[†]L.F. and Z.G. contributed equally to the work.

Fig. S1 The XRD patterns of Cu@Zn-MOF/PVA and Cu@PVA

Fig. S2 Contact angles of LiTFSI-DOL/DME electrolyte on the Cu foil、Cu@Zn-MOF and Cu@Zn-MOF/PVA.

Fig. S3 Apparent resistance of samples (a)Cu@Zn-MOF side (b) Back of Cu@Zn-MOF; (c) Rough (d) Smooth side of Cu foil.

Fig. S4 Cross-sectional SEM images of the Zn-MOF film on Cu foil with different crystallization time (a) 0min, (b) 10 min, (c) 30 min, (d) 1 h, (d) 3 h, (d) 5 h.

Fig. S5 Top-view SEM images of the Zn-MOF film on Cu foil with different crystallization time (a) (b) (c)0min, (d) (e) (f) 10 min, (g) (h) (i)30 min, (g) (k) (l) 1 h, (m) (n) (o) 3 h, (p) (q) (r) 5 h.

Fig. S6 Top-view SEM images of the Zn-MOF/PVA film on Cu foil with different content of PVA (a) (b) (c) 0.16%, (d) (e) (f) 0.32%, (g) (h) (i) 0.48%.

Fig. S7 (a) schematic diagram of nanoindentation test (b) shows the curve of average elastic modulus

Fig. S8 Impedance change before and after time-current test (a) Cu foil; (b) Cu@Zn-MOF; (c) Cu/PVA; (d) Cu@Zn-MOF/PVA.

Fig. S9 Cyclic voltammetry curve of artificial SEI film (a) Cu foil; (b) Cu@Zn-MOF; (c) Cu/PVA; (d) Cu@Zn-MOF/PVA.

Fig. S10 The electrochemical impedance at different cycle times (a) Cu foil; (b) Cu@Zn-MOF; (c) Cu/PVA;

Fig.S11 Impedance equivalent circuit model.

Fig. S12 The coulombic efficiency of the electrode under the protection of Zn-MOF film obtained at different growth times.

Fig. S13 Coulombic efficiency of PVA with different lithium salt contents.

Fig. S14 Coulombic efficiency of Zn-MOF/PVA films with different PVA content.

Fig. S15 LiFePO₄ and Li foil assembly batteries (a)Cycle performance of the battery at 1C; (b) Charge-discharge voltage curve after 100 cycles.

Fig. S16 Top-view SEM images of Li plating/stripping after first cycles on (a) Cu foil, (b) Cu@Zn-MOF,(c) Cu@PVA,(d) Cu@Zn-MOF/PVA with 1 mA cm⁻², 1 mAh cm⁻².

Cycle number		1	10	30	60	90	120	150	
Cu foil	R_s/Ω	5.13	4.54	4.35	7.09	6.28	4.99	7.12	
	R_{ct}/Ω	14.28	11.48	4.23	6.55	8.43	4.78	8.60	
Cu@Zn- MOF	R_s/Ω	3.40	3.56	3.13	3.42	4.09	3.87	4.55	
	R_{ct}/Ω	41.87	51.60	33.89	6.75	7.07	39.43	9.13	
Cu@ PVA	R_s/Ω	6.22	5.84	7.22	10.95	8.49	5.78	8.90	
	R_{ct}/Ω	15.85	15.30	6.36	14.32	11.06	8.83	9.71	
Cu@Zn-	R_s/Ω	3.78	3.63	3.60	3.69	3.72	3.79	3.74	
MOF/PV	R_{ct}/Ω	27.45	27.60	29.27	27.89	26.70	26.76	30.17	
Α									

Table S1. Rs and Rct of Cu foil, Cu@Zn-MOF, Cu@PVA, and Cu@Zn-MOF/PVA

	Current density	Capacity	Coulombic	<u> </u>	Reference	
Electrode Structures	(mA cm ⁻²)	(mAh cm ⁻²)	efficiency	Cycle		
	1	1	97%	50	1	
2D nexagonal BN	3	1	95%	50		
Polyacrylonitrile nanofiber	1	1	97.9%	120	2	
	3	1	97.4%	120	-	
SEI coated graphene	0.5	0.5	97%	100	3	
Tubular carbon array	1	2	98%	200	4	
Cu ₃ N-SBR	1	1	97.6%	150	5	
Cu2O/partially reduced	2	1	05 (0/	140	6	
graphene oxide			93.070			
"solid-liquid" Interfacial	0.5	1	07 6%	120	7	
protective layer			97.070		7	
Double-Layer Nanodiamond	1	2	98.5%	150	8	
Polyacrylonitrile submicron fiber array	1	1	97.4%	250	9	
Carbon nanotube	1	2	92.4%	50	10	
GaInSnZn liquid-metal	1	0.5	97.43%	100	11	
Cu CuO Ni 10	1	1	050/	250	10	
Cu-CuO-INI-10	1	1	95%	250	12	
Zn-MOF/PVA	1	1	y/.3%	400	This work	
	3	1	97.7%	250		

Table S2. A brief summary of the reported materials for Li metal anode

References

Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.;
Liu, Z.; Chu, S.; Cui, Y., Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial
Layer for Improvement of Lithium Metal Anode. *Nano Letters* 2014, *14* (10), 6016-6022.

2. Liang, Z.; Zheng, G.; Liu, C.; Liu, N.; Li, W.; Yan, K.; Yao, H.; Hsu, P.-C.; Chu, S.; Cui,

Y., Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. *Nano Letters* 2015, *15* (5), 2910-2916. 3. Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium–Sulfur Batteries. *ACS Nano* **2015**, *9* (6), 6373-6382.

4. Guo, J.; Zhao, S.; Yang, H.; Zhang, F.; Liu, J., Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries. *Journal of Materials Chemistry A* **2019**, *7* (5), 2184-2191.

5. Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y., An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. *Advanced materials* **2017**, *29* (10), 1605531.

Liu, Y.; Zhang, S.; Qin, X.; Kang, F.; Chen, G.; Li, B., In-Plane Highly Dispersed Cu₂O Nanoparticles for Seeded Lithium Deposition. *Nano Letters* 2019, *19* (7), 4601-4607.

Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D.; Liu, Y.; Liu, C.; Hsu, P.-c.; Bao,
Z.; Cui, Y., Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective
Layer. *Journal of the American Chemical Society* 2017, *139* (13), 4815-4820.

Liu, Y.; Tzeng, Y.-K.; Lin, D.; Pei, A.; Lu, H.; Melosh, N. A.; Shen, Z.-X.; Chu, S.; Cui,
Y., An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes.
Joule 2018, 2 (8), 1595-1609.

9. Lang, J.; Song, J.; Qi, L.; Luo, Y.; Luo, X.; Wu, H., Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium Metal Anode. *ACS applied materials & interfaces* **2017**, *9* (12), 10360-10365.

10. Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei,

F.; Zhang, Q., Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth. *Advanced materials* **2016**, *28* (11), 2155-2162.

11. Wei, C.; Fei, H.; An, Y.; Tao, Y.; Feng, J.; Qian, Y., Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li–metal anode. *Journal of Materials Chemistry A* **2019**, *7* (32), 18861-18870.

Wu, S.; Zhang, Z.; Lan, M.; Yang, S.; Cheng, J.; Cai, J.; Shen, J.; Zhu, Y.; Zhang, K.;
Zhang, W., Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward
Stable Lithium Metal Anodes. *Advanced materials* 2018, *30* (9), 1705830.