Supporting Information

Discordant Nature of Cd in GeTe Enhances Phonon Scattering and Improves Band Convergence for High Thermoelectric Performance

Evariste Nshimyimana, a ShiQiang Hao, b Xianli Su, a* Cheng Zhang, a Wei Liu, a Yonggao Yan, a
Ctirad Uher, d Chris Wolverton, b Mercouri G. Kanatzidis, b,c and Xinfeng Tang a*

a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Wuhan University of Technology, Wuhan 430070, China

b Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

c Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

d Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Corresponding authors: Xianli Su (suxianli@whut.edu.cn), Xinfeng Tang (tangxf@whut.edu.cn).
Figure S1. Heat flow from DSC measurements showing the phase transition temperature of Ge$_{1-x}$Cd$_x$Te ($x = 0-0.05$).
Scattering parameter calculations: Callaway suggests that the impurity scattering parameter (Γ) can be calculated by fitting the lattice thermal conductivity of a disordered compound (κ_L) and the lattice thermal conductivity of an ordered pure GeTe (κ^p_L) compound through Eq. 1:

$$\frac{\kappa_L}{\kappa^p_L} = \tan^{-1} u, \quad u^2 = \frac{\pi^2 \Theta_D \Omega}{v^2} \kappa^p_L \Gamma,$$

(1)

where u is the disorder scaling parameter, Θ_D is the Debye temperature (244 K for pure GeTe), Ω is the average atomic volume, \hbar is the Planck’s constant, and v is the average sound velocity (2452 m/s for pure GeTe). In the model of Slack1 and Abeles2, considering the disorder scattering parameter as a combined value of disorder from both mass and strain field fluctuations allows to express Γ as: $\Gamma = \Gamma_M + \Gamma_S$, where Γ_M and Γ_S are the mass and strain fluctuation parameters, respectively, given by...
Here n is the number of different atoms in the lattice ($n = 2$ in GeTe) and c_i is the degeneracy of the atomic occupancy ($c_1 = c_2 = 1$), \bar{M}_i and \bar{r}_i are the average atomic mass and radius on the i^{th} sublattice, respectively, \bar{M} is the average relative atomic mass of the compound, f_i^k is the fractional occupation of the k^{th} atoms on the i^{th} sublattice, ε_1 is the phenomenological adjustable parameter, M_i^k and r_i^k are the atomic mass and radius, respectively, expressed as:

\begin{align}
M_i^k &= \sum_k f_i^k M_i^k \\
\bar{M} &= \frac{\sum_{i=1}^n c_i \bar{M}_i}{\sum_{i=1}^n c_i} \\
r_i^k &= \sum_k f_i^k r_i^k \\
M_i^k &= \sum_{k} f_i^k M_i^k \\
\bar{r}_i &= \frac{\sum_{i=1}^n c_i \bar{r}_i}{\sum_{i=1}^n c_i}
\end{align}
Following the above expressions, a simplified expression for the impurity scattering parameter \(\Gamma \) is derived and can be written as:

\[
\Gamma = \frac{1}{4} \left(\frac{\overline{M}}{M} \right)^2 \chi (1 - x) \left[\left(\frac{M_1 - M_2}{\overline{M}} \right)^2 + \epsilon_1 \left(\frac{r_1 - r_2}{\overline{r}_1} \right)^2 \right].
\]

(7)

Figure S3. Temperature dependent thermoelectric transport properties for Ge\(_{1-y}\)Sb\(_{y}\)Te (\(y = 0\)–0.10): (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice thermal conductivity and (f) figure of merit, ZT.

Electronic thermal conductivity and Lorenz number of Ge\(_{0.97-y}\)Cd\(_{0.03}\)Sb\(_{y}\)Te: The electronic thermal conductivity is calculated from the Wiedemann-Franz law, \(\kappa_e = L \sigma T \), where \(L \) is the Lorenz number. \(L \) was calculated using the chemical potential, estimated by fitting the
experimental Seebeck coefficient. σ is the measured electrical conductivity and T is the absolute temperature.

Figure S4. (a) Temperature-dependent electronic thermal conductivity of the Ge$_{0.97-y}$Cd$_{0.03}$Sb$_y$Te ($y = 0$-0.10) sample and (b) Lorenz number as a function of temperature of Ge$_{0.97-y}$Cd$_{0.03}$Sb$_y$Te ($y = 0$-0.10).

References