Supporting Information

ZnS Spheres Wrapped by Ultrathin Wrinkled Carbon film as Multifunctional Interlayer for Long-life Li-S Batteries

Jin-Lin Yang^{a,b}, Shi-Xi Zhao^{a*}, Yi-Ming Lu^{a,b}, Xiang-Tian Zeng^{a,b}, Wei Lv^a and Guo-Zhong Cao^{c*}

^a Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

^b School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

^c Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.

*Corresponding author: Email: <u>zhaosx@sz.tsinghua.edu.cn</u> (S.X.Zhao); E-mail: <u>gzcao@uw.edu</u>

Supplementary Figures

Figure S1. SEM image of ZnS@WCF

Figure S2. SEM images of pure WCF

Samples	RF (g/ml)	TPOS (ml)	NH ₃ ·H ₂ O	Water/ethanol (ml/ml)	
А	0.10-0.14	2.5	3	10/70	
В	0.05-0.07	2.5	3	10/70	
С	0.0125-0.0175	2.5	3	10/70	
D	0.025-0.035	5	3	10/70	
Е	0.025-0.035	1.25	3	10/70	
F	0.025-0.035	2.5	3	20/60	
G	0.025-0.035	2.5	1.5	10/70	
Н	0.025-0.035	2.5	6	10/70	
Ι	0.025-0.035	2.5	12	10/70	
J	Same to the synthesis process of ZnS@WCF, but TPOS and RF were added simultaneously				
ZnS@WCF	0.025-0.035	2.5	3	10/70	

Table S1. Synthesis details of ZnS@WCF.

Figure S3. SEM images of different samples fabricated throughout the process mentioned in Table S2. (a)-(j) are corresponded to the sample A-J repectively.

Figure S4. XRD pattern of the pure WCF sample.

Figure S5. Raman spectra of ZnS@WCF

Figure S6. High resolution XPS spectra of C 1s in ZnS@WCF

Figure S7. N₂ sorption isotherms and pore distribution of (a) ZnS nanospheres and (b) WCF

Table S2. S_{BET} and V_P values of samples.

Samples	ZnS nanospheres	WCF	ZnS@WCF
$S_{BET}(m^2 \cdot g^{-1})$	12.532	768.05	446.95
$V_{P}(m^{3}\cdot g^{-1})$	0.0434	1.943	0.7389
Pore Size (nm)	1.21	1.66	1.64

Theoretical equations of the current-time transients of four classic electrochemical deposition models (2D instantaneous nucleation and 2D progressive nucleation are based on Bewick, Fleischman, and Thirsk models; 3D instantaneous nucleation and 3D progressive nucleation are based on Scharifker–Hills models):⁴⁷

2DI:

$$\frac{i}{i_m} = (\frac{t}{t_m}) \{ \exp[\frac{t^2 - t_m^2}{2t_m^2}] \}$$
(S1)

2DP:

$$\frac{i}{i_m} = (\frac{t}{t_m})^2 \{ \exp[\frac{-2(t^3 - t_m^3)}{3t_m^3}] \}$$
(S2)

3DI:

$$\frac{i}{i_m} = \left(\frac{1.9542}{t/t_m}\right)^{1/2} \left\{1 - \exp\left[1.2564\left(\frac{t}{t_m}\right)\right]\right\}$$
(S3)

3DP:

$$\frac{i}{i_m} = \left(\frac{1.2254}{t/t_m}\right)^{1/2} \left\{1 - \exp\left[2.3367\left(\frac{t}{t_m}\right)^2\right]\right\}$$
(S4)

Figure S8. TGA curve of CB/S hybrid under N₂ atmosphere.

Figure S9. The initial five CV curves of LS-ZnS@WCF at a scan rate of 0.1 mV·s⁻¹

Figure S10. (a) CV curves at different scan rates ranging from 0.1 to 5 mV s⁻¹; (b) The plots of log ip as a function of

log v.

As we can see from the CV curves, the polarization and the width of current peaks increased with the scan rate. The power law formulas $ip = a \cdot v^b$ and log ip = loga + blogv can be employed for the analysis of the CV data obtained. Ip is the current of the oxidation peak and the reduction peaks (O₁, R₁ and R₂). v represents the scan rate. Two well-defined conditions should be introduced: i) b = 1.0 is representative of surface-capacitive behavior and ii) b = 0.5 suggests a faradaic intercalation process, which is Li⁺ diffusion controlled. b is equal to the slope of plots in the right fig. We found that the values of b are in the range of 0.48-0.6, indicating the Li⁺ diffusion-controlled process during the electrochemical reaction. ^{\$1,\$2}

Figure S11. Charge-discharge profiles of L-S cells based on different type of interlayers at 2 C.

Figure S12. Cycling performance of ZnS@WCF hybrid without the addition of CB/S cathode.

Figure S13. Charge-discharge profiles of L-S cells based on different type of interlayers after 300 cycles at 0.5 C.

Figure S14. (a),(b) SEM images of ZnS@WCF coated separator with different thickness; (c) Cycling performance of

LS-ZnS@WCF based on different interlayer thickness at 0.5 C.

Figure S15. Cycling performance of LS-ZnS@WCF with a high areal sulfur loading of 3.5 mg·cm⁻² at 0.1 C.

Materials	Current density	Cycle number	Capacity decay rate (%)	Rate performance	Ref
SnO ₂ -rGO	1 C	200	0.15	734 mAh g ⁻¹ , 2C	17
Laponite-CB	0.2 C	500	0.06	758 mAh g ⁻¹ , 2C	[S3]
MoO ₃ -CNTs	1 C	400	0.12	764 mAh g ⁻¹ , 2C	[S4]
Co/mSiO2-NCNTs	1 C	250	0.09	552 mAh g ⁻¹ , 5C	[S5]
НЕМО-КВ	0.5 C	600	0.077	634 mAh g ⁻¹ , 1C	[S6]
PDA-rGO	0.1	100	0.28	460 mAh g ⁻¹ , 2C	[S7]
ZnS@WCF	1 C	600	0.045	807 mAh g ⁻¹ , 2C	This work

Table S2. Comparison of electrochemical performances of the other hybrid interlayer materials in recent reported

literatures.

References

[1] J. Wang, J. Polleux, J. Lim and B. Dunn, J. Phys. Chem. C, 2007, 111, 14925–14931.

[2] X. H. Rui, N. Yesibolati, S. R. Li, C. C. Yuan and C. H. Chen, Solid State Ionics, 2011, 187, 58-63.

[3] Y. Yang, J. Zhang, Adv. Energy Mater. 8 (2018) 1801778.

[4] L. Luo, X. Qin, J. Wu, G. Liang, Q. Li, M. Liu, F. Kang, G. Chen, B. Li, J. Mater. Chem. A. 6 (2018) 8612-8619.

- [5] D. Fang, Y. Wang, X. Liu, J. Yu, C. Qian, S. Chen, X. Wang, S. Zhang, ACS Nano 13 (2019) 1563-1573.
- [6] Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li, R. Zhang, M. Li, Z.-A. Qiao, Energy Storage Mater. (2019).

[7] F. Wu, S. Zhao, J. Li, Y. Lu, Y. Su, L. Chen, L. Bao, J. Yao, X. Liu, ACS Appl. Mater. Interfaces 11 (2019) 12544-12553.