Graphitic Carbon Nitride doped SnO₂ Enabling Efficient Perovskite Solar Cells Exceeding 22%

Jinbo Chen, Hua Dong, Lin Zhang, Jingrui Li, Fuhao Jia, Bo Jiao, Xue Hou, Jian Liu, Zhaoxin Wu

Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, 710049, China.

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

*Corresponding author.
E-mail: donghuaxjtu@mail.xjtu.edu.cn
E-mail: liujian@qust.edu.cn
E-mail: zhaoxinwu@mail.xjtu.edu.cn
Fig. S1. The absorption and PL spectra of g-CNQD.
Fig. S2. (a) UV–vis absorption spectrum of the SnO$_2$ and G-SnO$_2$, (b) the relationship of $(\alpha \nu)^{1/2}$ vs energy for SnO$_2$ and G-SnO$_2$.
Fig. S3. Contact angle measurement for water on bare SnO$_2$ (a) and G-SnO$_2$ (b).
Fig. S4. UV–vis absorption spectrum of perovskite film deposited on the SnO$_2$ and G-SnO$_2$, (b) the relationship of $(\alpha hv)^{1/2}$ vs energy for perovskite film deposited on the SnO$_2$ and G-SnO$_2$.
Fig. S5. Statistics parameters of V_{oc} (a), J_{sc} (b), FF (c), and PCE (d) SnO$_2$ and G-SnO$_2$ with different doping concentration PSCs.
Fig. S6. The $J-V$ curves of the SnO$_2$ and G-SnO$_2$ with different g-C$_3$N$_4$ concentration PSCs
Fig. S7. The current J-V curves based on SnO$_2$ and G-SnO$_2$ films fitting with the Mott-Gurney law.
Fig. S8. EIS of planar-type PSCs with SnO$_2$ and G-SnO$_2$ ETLs, the insert picture is the fitting model.
Fig. S9. XPS survey scans of bare SnO$_2$ and G-SnO$_2$.
Fig. S10. (a) the top view of the charge density difference of G-SnO$_2$. (b) the side view for the charge density difference of G-SnO$_2$, the cyan and yellow areas indicate electron accumulation and depletion, respectively. (c) the corresponding 2D view, the blue and yellow indicate electron accumulation and depletion, respectively.
<table>
<thead>
<tr>
<th>Sample</th>
<th>τ_1 (ns)</th>
<th>A_1 (%)</th>
<th>τ_2 (ns)</th>
<th>A_2 (%)</th>
<th>τ_{ave} (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$</td>
<td>42.05</td>
<td>11.3</td>
<td>323.8</td>
<td>88.70</td>
<td>291.96</td>
</tr>
<tr>
<td>G-SnO$_2$</td>
<td>12.7</td>
<td>13.2</td>
<td>364.8</td>
<td>86.80</td>
<td>318.32</td>
</tr>
</tbody>
</table>
Table S2. The parameters of PSCs based on bare SnO$_2$.

<table>
<thead>
<tr>
<th>Device</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>FF</th>
<th>PCE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.106</td>
<td>23.26</td>
<td>0.7662</td>
<td>19.71</td>
</tr>
<tr>
<td>2</td>
<td>1.119</td>
<td>23.46</td>
<td>0.7672</td>
<td>20.14</td>
</tr>
<tr>
<td>3</td>
<td>1.118</td>
<td>23.72</td>
<td>0.7620</td>
<td>20.21</td>
</tr>
<tr>
<td>4</td>
<td>1.125</td>
<td>23.39</td>
<td>0.7624</td>
<td>20.06</td>
</tr>
<tr>
<td>5</td>
<td>1.120</td>
<td>23.37</td>
<td>0.7596</td>
<td>19.88</td>
</tr>
<tr>
<td>6</td>
<td>1.121</td>
<td>23.59</td>
<td>0.7566</td>
<td>20.00</td>
</tr>
<tr>
<td>7</td>
<td>1.124</td>
<td>23.29</td>
<td>0.7532</td>
<td>19.72</td>
</tr>
<tr>
<td>8</td>
<td>1.125</td>
<td>23.42</td>
<td>0.7576</td>
<td>19.97</td>
</tr>
<tr>
<td>9</td>
<td>1.121</td>
<td>23.55</td>
<td>0.7492</td>
<td>19.78</td>
</tr>
<tr>
<td>10</td>
<td>1.109</td>
<td>23.59</td>
<td>0.7514</td>
<td>19.66</td>
</tr>
<tr>
<td>11</td>
<td>1.112</td>
<td>23.53</td>
<td>0.7559</td>
<td>19.78</td>
</tr>
<tr>
<td>12</td>
<td>1.111</td>
<td>23.87</td>
<td>0.7553</td>
<td>20.03</td>
</tr>
<tr>
<td>13</td>
<td>1.109</td>
<td>23.35</td>
<td>0.7459</td>
<td>19.32</td>
</tr>
<tr>
<td>14</td>
<td>1.105</td>
<td>23.22</td>
<td>0.7513</td>
<td>19.28</td>
</tr>
<tr>
<td>15</td>
<td>1.102</td>
<td>23.61</td>
<td>0.7441</td>
<td>19.36</td>
</tr>
<tr>
<td>16</td>
<td>1.108</td>
<td>23.15</td>
<td>0.7355</td>
<td>18.86</td>
</tr>
<tr>
<td>17</td>
<td>1.114</td>
<td>23.11</td>
<td>0.7287</td>
<td>18.76</td>
</tr>
<tr>
<td>18</td>
<td>1.116</td>
<td>23.24</td>
<td>0.7404</td>
<td>19.21</td>
</tr>
<tr>
<td>19</td>
<td>1.113</td>
<td>23.20</td>
<td>0.7483</td>
<td>19.33</td>
</tr>
<tr>
<td>20</td>
<td>1.114</td>
<td>23.20</td>
<td>0.7471</td>
<td>19.31</td>
</tr>
<tr>
<td>21</td>
<td>1.124</td>
<td>23.61</td>
<td>0.7388</td>
<td>19.60</td>
</tr>
<tr>
<td>22</td>
<td>1.109</td>
<td>23.57</td>
<td>0.7397</td>
<td>19.33</td>
</tr>
<tr>
<td>23</td>
<td>1.103</td>
<td>23.64</td>
<td>0.7234</td>
<td>18.87</td>
</tr>
<tr>
<td>24</td>
<td>1.111</td>
<td>23.52</td>
<td>0.7425</td>
<td>19.40</td>
</tr>
<tr>
<td>Average</td>
<td>1.114</td>
<td>23.44</td>
<td>0.7493</td>
<td>19.57</td>
</tr>
</tbody>
</table>
Table S3. The parameters of the PSCs based on optimal G-SnO$_2$.

<table>
<thead>
<tr>
<th>Device</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm2)</th>
<th>FF</th>
<th>PCE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.159</td>
<td>23.48</td>
<td>0.7671</td>
<td>20.87</td>
</tr>
<tr>
<td>2</td>
<td>1.162</td>
<td>23.42</td>
<td>0.7689</td>
<td>20.93</td>
</tr>
<tr>
<td>3</td>
<td>1.158</td>
<td>23.68</td>
<td>0.7672</td>
<td>21.04</td>
</tr>
<tr>
<td>4</td>
<td>1.162</td>
<td>23.50</td>
<td>0.7663</td>
<td>20.92</td>
</tr>
<tr>
<td>5</td>
<td>1.164</td>
<td>23.50</td>
<td>0.7629</td>
<td>20.86</td>
</tr>
<tr>
<td>6</td>
<td>1.157</td>
<td>23.66</td>
<td>0.7604</td>
<td>20.82</td>
</tr>
<tr>
<td>7</td>
<td>1.154</td>
<td>23.69</td>
<td>0.7599</td>
<td>20.78</td>
</tr>
<tr>
<td>8</td>
<td>1.156</td>
<td>23.85</td>
<td>0.7608</td>
<td>20.97</td>
</tr>
<tr>
<td>9</td>
<td>1.152</td>
<td>23.94</td>
<td>0.7625</td>
<td>21.03</td>
</tr>
<tr>
<td>10</td>
<td>1.168</td>
<td>24.20</td>
<td>0.7657</td>
<td>21.64</td>
</tr>
<tr>
<td>11</td>
<td>1.163</td>
<td>24.21</td>
<td>0.7534</td>
<td>21.21</td>
</tr>
<tr>
<td>12</td>
<td>1.167</td>
<td>24.23</td>
<td>0.7628</td>
<td>21.57</td>
</tr>
<tr>
<td>13</td>
<td>1.166</td>
<td>24.17</td>
<td>0.7607</td>
<td>21.44</td>
</tr>
<tr>
<td>14</td>
<td>1.167</td>
<td>24.15</td>
<td>0.7622</td>
<td>21.49</td>
</tr>
<tr>
<td>15</td>
<td>1.163</td>
<td>23.82</td>
<td>0.7631</td>
<td>21.14</td>
</tr>
<tr>
<td>16</td>
<td>1.169</td>
<td>23.89</td>
<td>0.7660</td>
<td>21.40</td>
</tr>
<tr>
<td>17</td>
<td>1.163</td>
<td>24.05</td>
<td>0.7571</td>
<td>21.18</td>
</tr>
<tr>
<td>18</td>
<td>1.161</td>
<td>23.99</td>
<td>0.7530</td>
<td>20.98</td>
</tr>
<tr>
<td>19</td>
<td>1.162</td>
<td>23.94</td>
<td>0.7555</td>
<td>21.02</td>
</tr>
<tr>
<td>20</td>
<td>1.165</td>
<td>23.78</td>
<td>0.7611</td>
<td>21.09</td>
</tr>
<tr>
<td>21</td>
<td>1.176</td>
<td>24.03</td>
<td>0.7830</td>
<td>22.13</td>
</tr>
<tr>
<td>22</td>
<td>1.171</td>
<td>24.07</td>
<td>0.7775</td>
<td>21.92</td>
</tr>
<tr>
<td>23</td>
<td>1.169</td>
<td>23.93</td>
<td>0.7814</td>
<td>21.86</td>
</tr>
<tr>
<td>24</td>
<td>1.158</td>
<td>23.91</td>
<td>0.7775</td>
<td>21.53</td>
</tr>
<tr>
<td>Average</td>
<td>1.163</td>
<td>23.88</td>
<td>0.7648</td>
<td>21.24</td>
</tr>
<tr>
<td></td>
<td>Bare SnO$_2$</td>
<td>1mg/ml G-SnO$_2$</td>
<td>2mg/ml G-SnO$_2$</td>
<td>3mg/ml G-SnO$_2$</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>electron mobility</td>
<td>5.2×10^{-3}</td>
<td>5.67×10^{-3}</td>
<td>6.60×10^{-3}</td>
<td>7.5×10^{-3}</td>
</tr>
<tr>
<td>(cm2 V$^{-1}$ s$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S4. Electron mobility of SnO$_2$ with different g-C$_3$N$_4$ doping concentration.
<table>
<thead>
<tr>
<th>Device structure</th>
<th>Store condition</th>
<th>Stability</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTO/bl-SnO₂/mp-SnO₂/MAPbI₃/Spiro-/Au</td>
<td>humidity 20% temperature 25 °C</td>
<td>90% 3000 h</td>
<td>1</td>
</tr>
<tr>
<td>FTO/SnO₂ nanosheet/C₆₀/MAPbI₃/Spiro-/Au</td>
<td>humidity 20% temperature 25 °C</td>
<td>94% 500h</td>
<td>2</td>
</tr>
<tr>
<td>ITO/Sb:SnO₂/MAPbI₃/Spiro-/Au</td>
<td>in a desiccator</td>
<td>95% 21d</td>
<td>3</td>
</tr>
<tr>
<td>ITO/SnO₂/C₆₀/CsFAMA/Spiro-/Au</td>
<td>humidity 15-20% temperature 25 °C</td>
<td>92% 90d</td>
<td>4</td>
</tr>
<tr>
<td>ITO/SnO₂-RCQs/CsFAMA/Spiro-/Au</td>
<td>humidity 40%-60% temperature 25 °C</td>
<td>95% over 1000h</td>
<td>5</td>
</tr>
<tr>
<td>ITO/G-SnO₂/CsFAMA/Spiro-/Au (our work)</td>
<td>humidity 60% temperature 25 °C</td>
<td>90% 1500h</td>
<td>-</td>
</tr>
</tbody>
</table>

References

