Supporting Information

Atom-precise incorporation of platinum in ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution

Xingxing Pan,^a Shuanglong Lu,^{*a} Duo Zhang,^b Ye Zhang,^c Fang Duan,^a Han Zhu,^a Hongwei Gu,^d Shuao Wang^b and Mingliang Du^{*a}

Contents

Fig S1. (a, b, c) SEM and (d, e, f) HR-TEM images of the as-synthesized Pt-CNFs, α -MoC _{1-x} -
CNFs and Pt/α-MoC _{1-x} -CNFs
Fig S2. HR-TEM images of the as-synthesized Pt/α -MoC _{1-x} -CNFs with different molar ratios
between $Pt(acac)_2$ and PMA: (a) Pt/α -MoC _{1-x} -CNFs-1, (b) Pt/α -MoC _{1-x} -CNFs-2, (c) Pt/α -
MoC_{1-x} -CNFs-3 and (d) Pt/ α -MoC _{1-x} -CNFs-4
Fig S3. XRD spectra of α -MoC _{1-x} -CNFs, Pt/ α -MoC _{1-x} -CNFs-1, Pt/ α -MoC _{1-x} -CNFs-2, Pt/ α -
MoC _{1-x} -CNFs-3 and Pt/ α -MoC _{1-x} -CNFs-4
Fig S4. (a, b, c) SEM and (d, e, f) HR-TEM images of the as-synthesized Pt/α -MoC _{1-x} -CNFs-
0.1, Pt/α -MoC _{1-x} -CNFs-0.2 and Pt/α -MoC _{1-x} -CNFs-0.34
Fig S5. HR-TEM images of (a) Pt/α -MoC _{1-x} -CNFs-2-800, (b) Pt/α -MoC _{1-x} -CNFs-2-900, (c)
$Pt/\alpha - MoC_{1-x} - CNFs - 2 - 1000, (d) Pt/\alpha - MoC_{1-x} - CNFs - 2 - 1100 \text{ and } (e) Pt/\alpha - MoC_{1-x} - CNFs - 2 - 1200.$
Fig S6. XRD pattern of Pt/α -MoC _{1-x} -CNFs-2-800, Pt/α -MoC _{1-x} -CNFs-2-900, Pt/α -MoC _{1-x} -
CNFs-2-1000, Pt/α-MoC _{1-x} -CNFs-2-1100 and Pt/α-MoC _{1-x} -CNFs-2-12005
Fig S7. Raman spectra of the as-produced Pt/α -MoC _{1-x} -CNFs-2 obtained at different
decomposition temperatures
Fig S8. HER polarization curves of Pt/α -MoC _{1-x} -CNFs with different doped amounts of Pt in
0.5 M H ₂ SO ₄ solution
Fig S9. (a-e) CV polarization curves of Pt/α -MoC _{1-x} -CNFs-1, Pt/α -MoC _{1-x} -CNFs-2, Pt/α -
MoC _{1-x} -CNFs-3, Pt/ α -MoC _{1-x} -CNFs-4 and Pt-CNFs in the nonfaradaic region with scan rates
from 5 to 200 mV s^{-1} . (f) The double-layer capacitance (C_d) of Pt/ α -MoC _{1-x} -CNFs-1, Pt/ α -
MoC _{1-x} -CNFs-2, Pt/α-MoC _{1-x} -CNFs-3, Pt/α-MoC _{1-x} -CNFs-4 and Pt-CNFs7
Fig S10. (a) HER polarization curves of Pt/α -MoC _{1-x} -CNFs-2 obtained under different
pyrolysis temperature and Pt/C in 0.5 M H_2SO_4 solution. (b) Corresponding Tafel slopes
derived from (a)
Fig S11. EIS Nyquist plots of Pt/a-MoC _{1-x} -CNFs-1, Pt/a-MoC _{1-x} -CNFs-2, Pt/a-MoC _{1-x} -

CNFs-3 and Pt/α -MoC _{1-x} -CNFs-4
Fig S12. SEM images of the Pt/α -MoC _{1-x} -CNFs-2 catalyst before (a) and after (c) HER. HR-
TEM images of the Pt/α -MoC _{1-x} -CNFs-2 catalyst before (b) and after (d) HER8
Fig S13. (a) SEM and (b) HR-TEM images of the as-synthesized $Pt/(Fe-C_x)-CNFs$; (c) SEM
and (d) HR-TEM images of Ni/(W-C _x)-CNFs9
Fig S14. HR-TEM image of WC _x NPs in Pt/WC _x -CNFs
Fig S15. HR-TEM images of (a) Pt/WC_x -CNFs and (b) WC_x -CNFs10
Fig S16. HAADF-STEM-EDS elemental mapping images of Pt/WC _x -CNFs10
Fig S17. XRD pattern of the Pt/WC _x -CNFs and WC _x -CNFs11
Fig S18. (a) EIS Nyquist plots of WC_x -CNFs and Pt/WC _x -CNFs-3 catalysts, the inset plot is
the local enlarged view of the EIS. (b) Stability test of Pt/WC_x -CNFs-3 through potential
cycling, before and after 5000 cycles11
Table S1. Summary of all samples in the paper and their HER performance in $0.5 \text{ M H}_2\text{SO}_4$
solution11
Table S2. Comparison of the HER performance for Pt/TMCs-CNFs catalyst with other Pt-
based, Mo-based or other transition metal carbide electrocatalysts in $0.5 \text{ M H}_2\text{SO}_4$ solution. 12
Supplementary References

Fig S1. (a, b, c) SEM and (d, e, f) HR-TEM images of the as-synthesized Pt-CNFs, α -MoC_{1-x}-CNFs and Pt/ α -MoC_{1-x}-CNFs.

Fig S2. HR-TEM images of the as-synthesized Pt/α -MoC_{1-x}-CNFs with different molar ratios between $Pt(acac)_2$ and PMA: (a) Pt/α -MoC_{1-x}-CNFs-1, (b) Pt/α -MoC_{1-x}-CNFs-2, (c) Pt/α -MoC_{1-x}-CNFs-3 and (d) Pt/α -MoC_{1-x}-CNFs-4.

Fig S3. XRD spectra of α -MoC_{1-x}-CNFs, Pt/ α -MoC_{1-x}-CNFs-1, Pt/ α -MoC_{1-x}-CNFs-2, Pt/ α -MoC_{1-x}-CNFs-3 and Pt/ α -MoC_{1-x}-CNFs-4.

Fig S4. (a, b, c) SEM and (d, e, f) HR-TEM images of the as-synthesized Pt/α -MoC_{1-x}-CNFs-0.1, Pt/α -MoC_{1-x}-CNFs-0.2 and Pt/α -MoC_{1-x}-CNFs-0.3.

Fig S5. HR-TEM images of (a) Pt/α-MoC_{1-x}-CNFs-2-800, (b) Pt/α-MoC_{1-x}-CNFs-2-900, (c) Pt/α-MoC_{1-x}-CNFs-2-1000, (d) Pt/α-MoC_{1-x}-CNFs-2-1100 and (e) Pt/α-MoC_{1-x}-CNFs-2-1200.

Fig S6. XRD pattern of Pt/α -MoC_{1-x}-CNFs-2-800, Pt/α -MoC_{1-x}-CNFs-2-900, Pt/α -MoC_{1-x}-CNFs-2-1000, Pt/α -MoC_{1-x}-CNFs-2-1100 and Pt/α -MoC_{1-x}-CNFs-2-1200.

Fig S7. Raman spectra of the as-produced Pt/α -MoC_{1-x}-CNFs-2 obtained at different decomposition temperatures.

Fig S8. HER polarization curves of Pt/α -MoC_{1-x}-CNFs with different doped amounts of Pt in 0.5 M H₂SO₄ solution.

Fig S9. (a-e) CV polarization curves of Pt/ α -MoC_{1-x}-CNFs-1, Pt/ α -MoC_{1-x}-CNFs-2, Pt/ α -MoC_{1-x}-CNFs-3, Pt/ α -MoC_{1-x}-CNFs-4 and Pt-CNFs in the nonfaradaic region with scan rates from 5 to 200 mV s⁻¹. (f) The double-layer capacitance (C_{dl}) of Pt/ α -MoC_{1-x}-CNFs-1, Pt/ α -MoC_{1-x}-CNFs-2, Pt/ α -MoC_{1-x}-CNFs-3, Pt/ α -MoC_{1-x}-CNFs-4 and Pt-CNFs.

Fig S10. (a) HER polarization curves of Pt/α -MoC_{1-x}-CNFs-2 obtained under different pyrolysis temperature and Pt/C in 0.5 M H₂SO₄ solution. (b) Corresponding Tafel slopes derived from (a).

Fig S11. EIS Nyquist plots of Pt/α -MoC_{1-x}-CNFs-1, Pt/α -MoC_{1-x}-CNFs-2, Pt/α -MoC_{1-x}-CNFs-3 and Pt/α -MoC_{1-x}-CNFs-4.

Fig S12. SEM images of the Pt/ α -MoC_{1-x}-CNFs-2 catalyst before (a) and after (c) HER. HR-TEM images of the Pt/ α -MoC_{1-x}-CNFs-2 catalyst before (b) and after (d) HER.

Fig S13. (a) SEM and (b) HR-TEM images of the as-synthesized $Pt/(Fe-C_x)-CNFs$; (c) SEM and (d) HR-TEM images of Ni/(W-C_x)-CNFs.

Fig S14. HR-TEM image of WC_x NPs in Pt/WC_x-CNFs.

Fig S15. HR-TEM images of (a) Pt/WC_x-CNFs and (b) WC_x-CNFs.

Fig S16. HAADF-STEM-EDS elemental mapping images of Pt/WC_x-CNFs.

Fig S17. XRD pattern of the Pt/WC_x-CNFs and WC_x-CNFs.

Fig S18. (a) EIS Nyquist plots of WC_x -CNFs and Pt/WC_x-CNFs-3 catalysts, the inset plot is the local enlarged view of the EIS. (b) Stability test of Pt/WC_x-CNFs-3 through potential cycling, before and after 5000 cycles.

serurem							
Catalyst	Molar Feeding Ratios of Pt(acac) ₂ / HPA (mmol) (Final Pt content if it is available)			Tafel slope (mV dec ⁻¹)			
Pt/α-MoC _{1-x} -CNFs-1		0.2 / 0.05	104	108			
Pt/α-MoC _{1-x} -CNFs-2	same amount of Pt(acac) ₂ used	0.2 / 0.1 (1.5 wt% Pt)	38	27			
Pt/α-MoC _{1-x} -CNFs-3		0.2 / 0.15	59	41			
Pt/α-MoC _{1-x} -CNFs-4		0.2 / 0.2	73	91			
Pt-CNFs		0.2 /	348	258			
α-MoC _{1-x} -CNFs		318	133				
Pt/α-MoC _{1-x} -CNFs-0.1	0.1 / 0.1		152	81			
Pt/a-MoC _{1-x} -CNFs-0.3	0.3 / 0.1 (3.3 wt% Pt)		50	20			
Pt/a-MoC _{1-x} -CNFs-800	0.2 / 0.1			114			
Pt/a-MoC _{1-x} -CNFs-900	0.2 / 0.1			66			
Pt/a-MoC _{1-x} -CNFs-1100	0.2 / 0.1			21			

Table S1. Summary of all samples in the paper and their HER performance in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Pt/α-MoC _{1-x} -CNFs-1200	0.2 / 0.1		68	84
Pt/WC _X -CNFs-1	same amount	0.2 / 0.05	47	44
Pt/WC _X -CNFs-2	of Pt(acac) ₂	of $Pt(acac)_2$ 0.2 / 0.1		50
Pt/WC _X -CNFs-3	used	0.2 / 0.15 (2.4 wt% Pt)	42	25
WC _X -CNFs	/ 0.15		>500	274
Pt/C	(20 wt% Pt)		30	28

Table S2. Comparison of the HER performance for Pt/TMCs-CNFs catalyst with other Pt-
based, Mo-based or other transition metal carbide electrocatalysts in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Catalyst	content of Pt (wt%)	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Journal	Reference
Pt/α-MoC _{1-x} -CNFs-2	1.5	38	27	This work	
Pt/WC _X -CNFs-3	2.4	42	25	This work	
Pt@Fe-N-C	2.1	60	42	Advanced Energy Material, 2017	[1]
Mo ₂ TiC ₂ T _X -Pt _{SA}	1.2	30	30	Nature Catalysis, 2018	[2]
ALD Pt/N-GO	2.1	38	29	Nature Communication, 2016	[3]
Pt@PCM	0.53	105	65.3	Science Advances, 2018	[4]
MoC _{1-x} /Pt NPs-600	3.0	30	31	Advanced Science, 2019	[5]
α-MoC _{1-x} /NC		142	74	Sustainable Chemistry & Engineering, 2019	[6]
Mo-α-MoC _{1-x}		115		Advanced Materials Interfaces, 2018	[7]
MoC@graphite		124	43	Journal of Materials Chemistry A, 2016	[8]
Mo ₂ C/NCF		144	55	ACS Nano, 2016	[9]
MoC-Mo ₂ C		126	43	Chemical Science, 2016	[10]
Ni-Mo ₂ C		155	79	Chemical Communications, 2013	[11]
Co-Mo ₂ C		140	39	Advanced Functional Materials, 2016	[12]
Mo ₂ C-Co		48	39	Advanced Materials, 2018	[13]
Ni-WC		53	43.5	Energy & Environmental Science, 2018	[14]

WN _x -NRPGC	132	86	Advanced Science, 2018	[15]
Mo ₂ C@3DNMC	155	73	Electrochimica Acta	[16]
G@N-MoS ₂	243	82.5	Advanced Materials, 2018	[17]
h-MoN@BNCNT	78	46	Advanced Functional Materials, 2018	[18]

Supplementary References

- X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng and R. Yu, *Adv. Energy Mater.*, 2018, 8, 1701345.
- J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi and G. Wang, *Nat. Catal.*, 2018, 1, 985-992.
- 3 N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton and X. Sun, *Nat. Commun.*, 2016, 7, 13638.
- 4 H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong and X. W. Lou, *Sci. Adv.*, 2018, 4, 6657.
- 5 H. J. Song, M. C. Sung, H. Yoon, B. Ju and D. W. Kim, *Adv. Sci.*, 2019, **6**, 1802135.
- 6 L. Lin, Z. Sun, M. Yuan, H. Yang, H. Li, C. Nan, H. Jiang, S. Ge and G. Sun, ACS Sustainable Chem. Eng., 2019, 7, 9637-9645.
- 7 J. Diao, W. Yuan, Y. Su, Y. Qiu and X. Guo, Adv. Mater. Interfaces, 2018, 5, 1800223.
- Z. Shi, Y. Wang, H. Lin, H. Zhang, M. Shen, S. Xie, Y. Zhang, Q. Gao and Y. Tang, J.
 Mater. Chem. A, 2016, 4, 6006-6013.
- 9 Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie, F. Zhao, Y. Wang, M. Zeng, J. Zhong and Y. Li, ACS Nano, 2016, 10, 11337-11343.
- H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, *Chem. Sci.*, 2016, 7, 3399-3405.
- T. Ouyang, A. N. Chen, Z. Z. He, Z. Q. Liu and Y. Tong, *Chem. Commun.*, 2018, 54, 9901-9904.
- 12 H. Lin, N. Liu, Z. Shi, Y. Guo, Y. Tang and Q. Gao, *Adv. Funct. Mater.*, 2016, **26**, 5590-5598.
- X. Zang, W. Chen, X. Zou, J. N. Hohman, L. Yang, B. Li, M. Wei, C. Zhu, J. Liang,M. Sanghadasa, J. Gu and L. Lin, *Adv. Mater.*, 2018, **30**, 1805188.
- 14 Y. Y. Ma, Z. L. Lang, L. K. Yan, Y. H. Wang, H. Q. Tan, K. Feng, Y. J. Xia, J. Zhong,

Y. Liu, Z. H. Kang and Y. G. Li, Energy Environ. Sci., 2018, 11, 2114-2123.

- 15 Y. Zhu, G. Chen, Y. Zhong, W. Zhou and Z. Shao, *Adv. Sci.*, 2018, **5**, 1700603.
- 16 K. An and X. Xu, *Electrochim. Acta*, 2019, **293**, 348-355.
- 17 C. Tang, L. Zhong, B. Zhang, H. F. Wang and Q. Zhang, *Adv. Mater.*, 2018, **30**, 1705110.
- 18 J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini, Q. Wu, Z. Zheng, Z. Tang and C. Cheng, *Adv. Funct. Mater.*, 2019, 29, 1805893.