Supporting Information

Promoting Hydrogen Evolution Reaction through Oxygen Vacancies and Phase Transformation Engineering on Layered Double Hydroxide Nanosheets

Shujie Liu,1 Jie Zhu,1 Mao Sun,1 Zhixue Ma,1 Kan Hu,1 Tomohiko Nakajima,2,* Xianhu Liu,3 Patrik Schmuki,4,* and Lei Wang1,3,*

1 School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
E-mail: wanglei@imu.edu.cn

2 Advanced Coating Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
E-mail: t-nakajima@aist.go.jp

3 Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China

4 Department of Materials Science and Engineering WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
E-mail: schmuki@ww.uni-erlangen.de
Experimental Section

1. Material Synthesis

Preparation of CoFe LDH and Ce/CoFe LDH. To prepare CoFe LDH, 0.5 mmol of Co(NO$_3$)$_2$·6H$_2$O and 0.5 mmol Fe(NO$_3$)$_3$·9H$_2$O (with Co/Fe molar ratios of 1:1 were dissolved in 30 mL of deionized water. Then 0.8 mmol Na$_2$CO$_3$ and 1.92 mmol NaOH were dissolved in 30 mL deionized water. Equal volumes of two solutions were mixed and added into a beaker under vigorous stirring 30 min. At last, 60 mL mixed solution was transferred to 100 mL stainless-steel Teflon-lined autoclave with a piece of nickel foam (NF, thickness:1.5 mm, 2.5 cm×2.5 cm) and heated at 80 °C for 48 h. For comparison, the NiCo- and NiFe LDHs were prepared by the similar approach. In order to fabricate the anode for the water splitting, the relatively thick CoFe LDH was fabricated according to the literature.1 The Ce/CoFe LDH were prepared by the same method as the CoFe LDH except for adding different concentrations of cerium source. The molar ratio for Ce:(Co+Fe) is 1%, 2% and 5%, and the corresponding samples were denoted as 1%Ce/CoFe LDH, 2%Ce/CoFe LDH, and 5%Ce/CoFe LDH, respectively.

Preparation of V-CoFe LDH and V-Ce/CoFe LDH. The CoFe LDH and 2%Ce/CoFe LDH was put on the quartz boat in a plasma reactor, and treated using N$_2$ plasma with different power densities (100, 200, 300, 400, and 500 W) and times.

2. Electrochemical measurements

All electrochemical performances were performed by a CHI 760E electrochemical workstation. An as-prepared NF-based electrocatalysts, a graphite rod, and saturated calomel electrode (SCE) were used as working electrode, counter electrode, and reference electrode, respectively. The iR-compensation (80%) polarization curves of HER performances were tested in 1 M KOH and 1 M PBS solution (pH=7.0) by linear sweep voltammetry (LSV) at a scan rate of 5 mV s$^{-1}$. For overall water splitting, the iR-compensation (80%) polarization curve in a two-electrode system was tested in 1 M KOH by LSV from 1.0 to 2.0 V at a scan
rate of 5 mV s\(^{-1}\). The accelerated durability tests were conducted by performing up to 4000 CV cycles in 1 M KOH with a sweep rate of 0.1 V s\(^{-1}\) in the potential range of 0.3 to 0 V (vs. RHE). The electrochemically active surface areas (ECSA) were measured via cyclic voltammograms (CVs) at various scan rates in small potential range. The electrochemical impedance spectroscopy (EIS) at -0.132 V (vs. RHE) was collected with frequency range from 0.1 Hz to 100 KHz and alternating voltage of 5 mV. All potentials for HER were calibrated to reversible hydrogen electrode (RHE) using the equation:

\[E_{\text{RHE}} = E_{\text{SCE}} + 0.0591 \times pH + 0.2412 \]

where \(E_{\text{RHE}} \) and \(E_{\text{SCE}} \) are the potentials versus RHE and the measured potentials versus SCE reference electrode, respectively. Oxygen and hydrogen evolution for overall water splitting were collected in an air-tight cell applied at 10 mA cm\(^{-2}\).

The amount of gases was measured with a gas chromatograph (Shimadzu, GC-2014C) every 20 min.

3. Characterization

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out using Zeiss Supra55 and JEM 2100F microscope for morphology observation. X-ray photoelectron spectroscopic (XPS) analysis was conducted on an ESCALAB 250Xi using a monochromatic Al K\(\alpha\) X-ray source. Renishaw inVia Microscope Raman were taken using a Raman spectrometer with a laser wavelength of 532 nm. Electron Paramagnetic Resonance (EPR) spectra of the samples were recorded on a JEOL-JES-FA-200 spectrometer at -150 °C. Atomic force microscopy (AFM) were taken on the Dimension Edge for structure observation. The crystal structure and orientation properties of the obtained films were studied by X-ray diffraction measurements (Rigaku, SmartLab). 2theta-beta maps (beta: the direction along Debye rings) were obtained with a two-dimensional (2D) pixel area detector (Dectris, PILATUS 100 K), and a collimator with 200 micro-m diameter. The detector length from the samples was fixed at 105 mm.

4. DFT calculation
All DFT calculations were carried out by Vienna ab-Initio Simulation Package (VASP).\(^2\) Core electrons are described by pseudopotentials generated from the projector augmented wave method,\(^3\) and valence electrons are expanded in a plane-wave basis set with an energy cutoff of 450 eV. The Perdew-Burke-ERNzerh (PBE) exchange correlation functional with the on-site Coulomb Repulsion U term was used. According to previous literatures,\(^4\) the value of U is selected 4.3 eV for Fe and 4.0 eV for Co. The 2D CoFe-LDHs is modeled by a (2×2) supercell consisting of 80 atoms and a vacuum of 16 Å. For the sampling of Brillouin-zone integrals, Gamma centered k-points grid of 4×4×1 was used. All the atom positions in the CoFe-LDHs were optimized. The convergence criterions of force and energy were set as 0.01 eV Å\(^{-1}\) and \(10^{-4}\) eV, respectively. Generally, the HER rate of catalyst was affected by the adsorption/desorption energetics of H* intermediate on its surface. It is widely accepted that the value of free energies of hydrogen adsorption (\(\Delta G_H\)) on the catalyst can be used as a good descriptor for its activity toward HER. To estimate \(\Delta G_H\) at zero potential and pH = 0, we calculated the binding energies \(\Delta E_H\) of H* intermediate and corrected them with zero point energy (ZPE) and entropy (TS) using \(\Delta G_H = \Delta E_H + \Delta ZPE-T\Delta S\). Here, \(\Delta E_H\) and \(\Delta G_H\) are calculated with respect to H\(_2\)(g).

References

Figure S1. SEM images of (a) CoFe LDH, (b) V-CoFe LDH, (c) Ce/CoFe LDH, and (d) V-Ce/CoFe LDH. Scale bars: (a-d) 200 nm.
Figure S2. AFM images of (a-c) CoFe LDH and (d-f) V-CoFe LDH.
Figure S3. (a,d,e) TEM images, (b) SAED pattern, and (c) FFT image of CoFe LDH.
Figure S4. (a,d,e) TEM images, (b) SAED pattern, and (c) FFT image of V-CoFe LDH.

The lattice of 0.26 nm corresponds to (012) and (311) phases of CoFe LDH and CoFe$_2$O$_4$, respectively. Besides, the lattice of 0.21 nm can be attributed to (107) and (400) phases of CoFe LDH and CoFe$_2$O$_4$, respectively.
Figure S5. TEM images Ce/CoFe LDH.
Figure S6. TEM images V-Ce/CoFe LDH.
Figure S7. AFM images of (a-c) Ce/CoFe LDH and (d-f) V-Ce/CoFe LDH.
Figure S8. SEM images of CoFe LDH powder.
Figure S9. (a) XRD patterns, (b) 2D XRD mappings, and (c,d) the lattice strains of CoFe LDH powder and Ce/CoFe LDH powder with N₂ plasma treatment at 500 W for different times.

In Figure R9, both CoFe LDH and Ce/CoFe LDH were plasma etched in various times (0, 10, 30, 120, 300, and 600 s) for comparison. Clearly, it shows a similar tendency for both CoFe LDH and Ce/CoFe LDH after etching. The (003) and (006) peaks representing LDH become weak with increasing plasma time from 10 s to 30 s, following with the disappearance after 120 s. On the contrary, the (111) peak representing CoFe₂O₄ shows a little bit strong intensity with increasing plasma time. These results are consistent with XRD data shown in Figure S9a. It provided an evidence that both CoFe₂O₄ and CoFe LDJ existed before plasma treatment, while the original CoFe₂O₄ kept and CoFe LDH transformed to CoFe₂O₄ during plasma process.
Figure S10. (a) Co 2p, (b) Fe 2p, and (c) O 1s spectra of CoFe LDH and V-CoFe LDH; (d) corresponding element ratio of Co, Fe, O, and C.

The Co and Fe are with atomic ratio of 1:1 (Co: 1.03 at%; Fe: 1.51 at%) before plasma treatment. After plasma treatment, the Co and Fe are with the ratio of 1:2 (Co: 1.68 at%; Fe: 3.78 at%).
Figure S11. (a) Co 2p, (b) Fe 2p, (c) O 1s, and (d) Ce 3d XPS spectra of Ce/CoFe LDH and V-Ce/CoFe LDH; (e) corresponding element ratio of Co, Fe, Ce, O, and C.

Co, Fe, and Ce are with a ratio of 3:6:1 for both samples.
Figure S12. Raman spectra of CoFe LDH and V-CoFe LDH.
Figure S13. Flat-band potentials of CoFe LDH and V-CoFe LDH from Mott-Schottky plots.
Figure S14. EPR of CoFe LDH and V-CoFe LDH.
Figure S15. IR-corrected polarization curves for CoFe LDH in N₂ plasma treatment for 10 s with different power densities.
Figure S16. (a) IR-corrected polarization curves for Ce/CoFe LDH with various Ce concentrations; (b) IR-corrected polarization curves for 2%Ce doped CoFe LDH with N₂ plasma treatment for 10 s with different power densities; (c) IR-corrected polarization curves for 2%Ce doped CoFe LDH with N₂ plasma treatment at 500 W for different times.
Figure S17. IR-corrected polarization curves for Ce/CoFe LDH and V-Ce/CoFe LDH on carbon cloth in 1 M KOH.

From **Figure S9**, the Ce/CoFe LDH powder sample shows the CoFe$_2$O$_4$ phase after plasma etching at 500 W for 5 min. It indicates that the LDH transfers to the cobalt-iron oxide. The samples without and with plasma etching were further dropped on carbon cloth for LSV measurement. From **Figure S17** it is sure that the V-Ce/CoFe LDH shows an improved HER activities.
Figure S18. (a-d) Cyclic voltammetry curves as a function of scan rate of (a) CoFe LDH, (b) Ce/CoFe LDH; (c) V-CoFe LDH, and (d) V-Ce/CoFe LDH in 1 M KOH.
Figure S19. XPS N 1s spectra for V-Ce/CoFe LDH.
Figure S20. IR-corrected polarization curves for CoFe LDH, V-CoFe LDH, Ce/CoFe LDH, and V-Ce/CoFe LDH in PBS solution (pH=7).
Figure S21. SEM images of CoFe LDH: (a,c) thick LDH; (b,d) thin LDH used in this work.
Figure S22. IR-corrected polarization curves for CoFe LDH and V-CoFe LDH (thick LDH) in 1 M KOH. The sample was plasma-treated at 500 W for 10 s.
Figure S23. IR-corrected polarization curves for (a) NiFe LDH and (b) NiCo LDH without and with plasma etching in 1 M KOH. The Ce/CoFe LDH was plasma-treated at 500 W for 10 s.
Figure S24. (a) SEM and (b-d) TEM images of V-Ce/CoFe LDH after 4000 cycling measurement.
Figure S25. (a) Co 2p, (b) Fe 2p, (c) O 1s, and (d) Ce 3d XPS spectra of V-Ce/CoFe LDH before and after 4000 cycling measurements; (e) corresponding element ratio of Co, Fe, Ce, O, and C.

After cycling measurement, Co, Fe, and Ce are with a ratio of 4:5:1.
Figure S26. H$_2$ and O$_2$ evolution and faradic efficiency produced by overall water-splitting device using CoFe LDH as anode and V-Ce/CoFe LDH as cathode.
Figure S27. UPS spectra of Ce/CoFe LDH and V-Ce/CoFe LDH.
Table S1. Comparison of the HER performances of CoFe LDH-based electrocatalysts in 1 M KOH.

<table>
<thead>
<tr>
<th>Electrocatalyst</th>
<th>Substrate</th>
<th>Overpotential (10 mA cm⁻²) (mV vs. RHE)</th>
<th>Tafel (mV dec⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-Ce/CoFe LDH</td>
<td>Nickel foam</td>
<td>73</td>
<td>69</td>
<td>This work.</td>
</tr>
<tr>
<td>Co₃₀Fe₇₀₋₄₋LDH/g-CN₆</td>
<td>Glassy carbon</td>
<td>270</td>
<td>79</td>
<td>ACS Appl. Energy Mater. 2018, 1, 1200</td>
</tr>
<tr>
<td>CoFe LDH</td>
<td>Copper foam</td>
<td>194</td>
<td>46.5</td>
<td>Appl. Catal. B: Environ. 2019, 244, 583.</td>
</tr>
<tr>
<td>CoFe</td>
<td>Nickel foam</td>
<td>110</td>
<td>35</td>
<td>Small 2017, 14, 1702568.</td>
</tr>
<tr>
<td>α-CoFe(OH)$_x$</td>
<td>Nickel foam</td>
<td>122</td>
<td>/</td>
<td>ChemElectroChem 2019, 6, 2415.</td>
</tr>
<tr>
<td>CoFe-LDH@g-C₃N₄</td>
<td>Glassy carbon</td>
<td>417</td>
<td>71</td>
<td>Mater. Chem. Front. 2019, 3, 520.</td>
</tr>
<tr>
<td>Co${0.75}$Fe${0.25}$-LDH</td>
<td>Nickel foam</td>
<td>205</td>
<td>98</td>
<td>ACS Appl. Mater. Interfaces 2018, 10, 42453</td>
</tr>
<tr>
<td>Co${0.75}$Fe${0.25}$-NC</td>
<td>Glassy carbon</td>
<td>202</td>
<td>68</td>
<td>J. Power Sources 2018, 389, 249.</td>
</tr>
</tbody>
</table>