Supporting information

Luminescent solar concentrator based on thermally activated delayed fluorescence dyes

Fahad Mateen1, Sae Youn Lee2*, Sung-Kyu Hong1*

1Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 04620, Republic of Korea
2Department of Energy and Material Engineering, Dongguk University-Seoul, 04620, Republic of Korea

*E-mail: hsk5457@dongguk.edu
*E-mail: saeyounlee@dongguk.edu

Figure S1. (a) Transmission spectra of 4CzIPN and 4CzTPN-Me based LSCs. (b) CIE chromaticity coordinates of light transmitted through 4CzIPN based LSC. (c) CIE chromaticity coordinates of light transmitted through 4CzTPN-Me based LSC
Figure S2. (a) 0.03 w/w% 4CzTPN-Me in methyl methacrylate (MMA) before polymerization reaction. (b) 0.04 w/w% 4CzTPN-Me in methyl methacrylate (MMA) before polymerization reaction. Photographs show that at 0.03 w/w% 4CzTPN-Me is completely soluble in MMA. However, at 0.04 w/w%, the hazy solution appears that shows 4CzTPN-Me is weakly soluble in MMA at higher concentrations.

Figure S3: Absorption and emission spectra of Coumarin 6.
Figure S4. Effect of UV irradiation time on emission intensity of (a) Coumarin 6, (b) 4CzIPN, (c) 4CzTPN-Me. High intensity 360nm UV light source was used to irradiate the samples.
Figure S5. (a) 1 cell configuration of LSC. (b) 4 cells configuration of LSC
Figure S6. (a) J-V curves of 4CzIPN based LSCs in 1 cell configuration. (b) J-V curves of 4CzTPN-Me based LSCs in 1 cell configuration.

Figure S7. J-V curves of 4CzIPN and 4CzTPN based LSCs in 4 cell configurations. Concentration of TADF dyes in both LSCs was kept 0.03 w/w%