Supporting information

Anthracene functionalized BODIPY derivative with singlet oxygen storage ability for photothermal and continuous photodynamic synergistic therapy

Jianwei Zhuab, Jianhua Zoub, Jie Zhanga, Yang Suna, Xiaochen Dongb*, Qi Zhanga*

aSchool of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

*Email: zhangqi@njtech.edu.cn

bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

*E-mail: iamxcdong@njtech.edu.cn
Figure S1 Synthetic route of BDPIA. (I) a) 2,4-dimethylporrole, DCM. b) NEt$_3$, BF$_3$·OEt$_2$. (II) NIS, CHCl$_3$/HOAc (3:1) rt. (c) anthracene-9-carbaldehyde, AcOH, piperidine, DMF, 150 °C, 6 h
Figure S2 (a) Singlet oxygen generation of MB using DPBF as a probe. (b) Linear fitting of the degradation of DPBF.

Figure S3 MTT assay of BDPIA NPs with or without light irradiation (660 nm, 0.2W/cm²)
Figure S4 Photograph of the mice of (a) Control (b) Without irradiation group (c) With irradiation groups after treatment.