Electronic Supporting Information

for

Yellow-emissive carbon nanodot-based ratiometric fluorescent nanosensor for visualization of exogenous and endogenous hydroxyl radicals in mitochondria of live cells

Danling Zhou1, Hong Huang2,*, Yangang Wang2,*, Yan Wang1,*, Zuming Hu1, Xi Li2

1 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

2 College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.

*Corresponding author:

huangho17@163.com (H. Huang);
ygwang8136@mail.zjxu.edu.cn(Y. Wang);
wy@dhu.edu.cn (Y. Wang).
Fig. S1 Fluorescence spectra of the CDs obtained under different excitation wavelength from 370 to 440 nm.
Fig. S2 Fluorescence responses of (A) CCA and (B) CDs to 100 μM Fe^{2+}, 1 mM H_{2}O_{2}, and 100 μM •OH.
Fig. S3 Zeta potentials of CDs and the CCA@TPP@CDs nanosensor. Zeta potentials of CDs and the CCA@TPP@CDs nanosensor were recorded at a concentration of 60 μg mL$^{-1}$ in aqueous solution.
Fig. S4 (A) Typical TEM image of the nanosensor. (B) The corresponding size-distribution histogram. (C) Representative AFM image of the nanosensor. (D) The height distribution of the nanosensor along the line.
Fig. S5 Time dependence of the fluorescence ratio of the nanosensor (60 μg/mL) in the presence of 100 μM •OH.
Table S1 Comparison of the performances of different fluorescent methods for the determination of •OH.

<table>
<thead>
<tr>
<th>FL method</th>
<th>Linear range (μM)</th>
<th>LOD (μM)</th>
<th>Manner</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanine-based fluorochrome</td>
<td>0 - 60</td>
<td>0.038</td>
<td>Single intensity</td>
<td>S1</td>
</tr>
<tr>
<td>Citrate-capped CdTe QDs</td>
<td>0.1 - 100</td>
<td>-</td>
<td>Single intensity</td>
<td>S2</td>
</tr>
<tr>
<td>MPT-Cy2</td>
<td>1 - 10</td>
<td>1.16</td>
<td>Single intensity</td>
<td>S3</td>
</tr>
<tr>
<td>AuNC@HPF</td>
<td>1 - 150</td>
<td>0.68</td>
<td>Ratiometric</td>
<td>S4</td>
</tr>
<tr>
<td>Si QDs–Ce6</td>
<td>1 - 200</td>
<td>0.97</td>
<td>Ratiometric</td>
<td>S5</td>
</tr>
<tr>
<td>Uniform Materials Based on Organic Salts</td>
<td>0 - 25</td>
<td>0.769</td>
<td>Ratiometric</td>
<td>S6</td>
</tr>
<tr>
<td>CCA@TPP@CDs</td>
<td>0.1 - 160</td>
<td>0.070</td>
<td>Ratiometric</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

Fig. S6 Apoptosis assay of RAW264.7 cells incubated with the nanosensor at concentrations of (A) 0 μg/mL, (B) 40 μg/mL, (C) 80 μg/mL, and (D) 120 μg/mL. I, II, III, and IV respectively represent the region of normal cells, early apoptotic cells, late apoptotic cells, and dead cells.
Fig. S7 (A) Immunoblotting analysis of relative levels of GAPDH (cytoplasmic marker) and COXIV (mitochondrial marker) in cytoplasmic and mitochondrial fractions purified from cells. (B) Fluorescence intensity changes of the PBS solution containing isolated mitochondria.
Fig. S8 Fluorescence images of RAW264.7 cells under different treatments. (a, b, c) Fluorescence images of RAW264.7 cells that were treated with the nanosensor (60 μg/mL), mannitol (10 mM), and •OH (100 μM, generated from Fe²⁺/H₂O₂ system) in order. (d, e, f) Fluorescence images of RAW264.7 cells that were treated with the nanosensor (60 μg/mL), mannitol (10 mM), and PMA (2.0 μg/mL) in sequence. (a, d) Fluorescence images from the blue channel (λ_{em} = 420-500 nm). (b, e) Fluorescence images from the yellow channel (λ_{em} = 530-610 nm). (c, f) Pseudo-colored ratio images obtained from the blue and yellow channels. (g) The corresponding F_{blue}/F_{yellow}. Data are represented as mean ± s.d. of 40 cells. Scale bar: 10 μm.