Supporting Information

Stable and Self-healable LbL Coating with Antibiofilm Efficacy Based on Alkylated Polyethyleneimine Micelles

Qianqian Wang,† Lin Wang,† Lingling Gao, a Luofeng Yu, a Wei Feng, a Nian Liu, a Miao Xu, a Xiaozhou Li, b Peng Li, a,c, and Wei Huang* a,c

a Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing 211816, China

b College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China

c Shaanxi Institute of Flexible Electronics (SIFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
Figure S1. Structure of PEI (a) and DPEI (b), 1H NMR of PEI and DPEI (c).
Figure S2. UV-vis transmittance spectra of PEI and DPEI solution at the same concentration (1 mg/mL).
Figure S3. UV-vis absorption (a) and transmission spectra (b) of (DPEI/PAA)*n, the transmission spectra of (DPEI/PAA)*59.5 and (PEI/PAA)*59.5 (c).
Figure S4. Surface topography of blank silicone (a), (DPEI/PAA)*59.5 (b), (DPEI/PAA)*60 (c), (PEI/PAA)*59.5 (d), and (PEI/PAA)*60 coatings (e), and the thickness of (DPEI/PAA)*59.5 coating (f). The scale bar is 10 μm.
Figure S5. The weight changes of LbL assembled coatings with increasing cycle numbers of (DPEI/PAA)*ₙ coating (a) and (PEI/PAA)*ₙ coating (b).