Open vessel free radical photopolymerization of double network gels for biomaterial applications using glucose oxidase

Ali A. Mohammed, † Juan A. Milan, † Siwei Li, † Justin J. Chung, † Molly M. Stevens, †‡§, Theoni K. Georgiou, † Julian R. Jones †,*

† Department of Materials, Imperial College London, SW7 2AZ, London, UK
‡ Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
§ Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK

Supporting information

1H NMR

Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR): A 400-MHz Avance Bruker spectrometer instrument was used to acquire the 1HNMR spectra of the photopolymers in D2O. 1H NMR samples for kinetics were taken at the 0 min time point and 1, 2, 5, 10, 20, 40, 50, 60, 70 and 90 min time points. Figure 1 and 2 shows PAAm and PAMPS at full conversions using 1 wt % and 0.1 wt % PI, respectively. Conversion was calculated using trioxane as a reference peak. The area under the monomer peaks were calculated relative to the area under trioxane which was set to 1. This was done for both 0 min and 90 min time points, as well as all time point in between for the kinetics study. Final conversions for each were calculated as:

Equation 1:

\[
\frac{(M_m - M_p)}{M_m} \times 100\% = PC\%
\]

Where Mm is the area under the monomer peak at time 0 and Mp is the area under the monomer peak at the specific polymer time point.
Figure 1 – 1H NMR spectra of PAAm showing full conversion with in the presence of GOX, using 1 wt % PI
Figure 2 – 1H NMR spectra of PAMPS showing full conversion with in the presence of GOX, using 0.5 wt % PI