Controllable and large-scale supramolecular vesicle aggregation: Orthogonal light-responsive host-guest and metal-ligand interactions[†]

Guangyan Du^{a,b} Lingyun Lou,^b Shuwen Guan,^b Yuanyuan Peng,^b Hongwei Qiao,^c Pingli Liu^d and Dan Wu,^{a,*}

 ^aCollege of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou City 310014, P. R. China.
 ^bCollege of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu City 610500, P. R. China.
 ^cShangdong Tengxi New Materials Co., Ltd, Taian City 271000, P. R. China.
 ^dState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum

University, Chengdu City 610500, P. R. China. E-mail address: danwu@zjut.edu.cn

Electronic Supplementary Information (22 pages)

1.	Synthesis of compound 5	S2
2.	Synthesis of compound Py-CD	S 7
3.	Synthesis of compounds $Azo-C$ and $Azo-C_3$	S10
4.	Particle size distributions of <i>Azo-C</i> and <i>Azo-C</i> ₃	S16
5.	The Tyndall effect in the series of $Azo-C$ and $Azo-C_3$ THF/H ₂ O solutions.	S16
6.	Investigations of trans–cis photoisomerization of Py - $CD \supset Azo$ - C and Py - $CD \supset Azo$ - C_3 under different irradiation conditions.	S17
7.	Partial ¹ H NMR spectra of Py-CD , Azo-C , Azo-C ₃ , Py-CD \supset Azo-C and Py-CD \supset Azo-C ₃ .	S18
8.	The color change of $Azo-C$ and $Azo-C_3$ solutions before and after complexation.	S20
9.	<i>Cytotoxicity evaluation and internalization behavior of</i> Py - $CD \supset Azo$ - C and Py - $CD \supset Azo$ - C_3 .	S20

1. Synthesis of compound 5

Scheme S1. Synthetic route to 5.

The ¹H NMR spectrum of **3** is shown in Fig. S1. ¹H NMR (400 MHz, CDCl₃, room temperature) δ (ppm): 8.77–8.69 (m, 4H), 8.67 (d, 2H), 7.88 (t, 4H), 7.40–7.31 (m, 2H), 7.03 (d, 2H), 3.89 (s, 3H). The ¹³C NMR spectrum of **3** is shown in Fig. S2. ¹³C NMR (125 MHz, CDCl₃, room temperature) δ (ppm): 160.53, 156.40, 155.84, 149.78, 149.10, 136.85, 130.77, 128.54, 123.75, 121.37, 118.30, 114.33, 55.39. HRMS (ESI) m/z calc. for C₂₂H₁₇N₃O, [M+H]⁺ 340.1444; found: 340.1438. The IR spectrum of **3** is shown in Fig. S3.

Fig. S1 ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of 3.

Fig. S3 IR spectrum of 3.

The ¹H NMR spectrum of **4** is shown in Fig. S4. ¹H NMR (500 MHz, DMSO- d_6 , room temperature) δ (ppm): 9.93 (s, 1H), 8.75 (d, 2H), 8.66–8.64 (m, 4H), 8.03–8.00 (m, 2H), 7.79–7.77 (d, 2H), 7.52–7.50 (m, 2H), 6.98–6.96 (d, 2H). The ¹³C NMR spectrum of **4** is shown in Fig. S5. ¹³C NMR (125 MHz, DMSO- d_6 , room temperature) δ (ppm): 158.97, 155.49, 155.13, 149.28, 137.39, 128.19, 127.88, 124.38, 120.86, 117.02,

116.21. HRMS (ESI) m/z calc. for $C_{21}H_{15}N_3O$, [M+H]⁺ 326.1288; found: 326.1280. The IR spectrum of **4** is shown in Fig. S6.

Fig. S5 ¹³C NMR spectrum (125 MHz, DMSO- d_6 , room temperature) of 4.

Fig. S6 IR spectrum of 4.

The ¹H NMR spectrum of **5** is shown in Fig. S7. ¹H NMR (500 MHz, CDCl₃, room temperature) δ (ppm): 8.74–8.72 (m, 4H), 8.69–8.67 (d, 2H), 7.91–7.87 (m, 4H), 7.37–7.35 (m, 2H), 7.13–7.11 (m, 2H), 2.59–2.58 (t, 1H). The ¹³C NMR spectrum of **5** is shown in Fig. S8. ¹³C NMR (125 MHz, CDCl₃, room temperature) δ (ppm): 136.86, 131.74, 128.57, 123.78, 121.36, 118.31, 115.30, 114.33, 78.32, 75.80, 55.90. HRMS (ESI) m/z calc. for C₂₄H₁₇N₃O [M+H]⁺ 364.1444; found: 364.1437. The IR spectrum of **5** is shown in Fig. S9.

Fig. S9 IR spectrum of 5.

2. The synthesis of compound Py-CD

Scheme S2. Synthetic route to Py-CD. S1-S2

The ¹H NMR spectrum of **7** is shown in Fig. S10. ¹H NMR (500 MHz, DMSO- d_6 , room temperature) δ (ppm): 7.76–7.70 (m, 2H), 7.48–7.40 (m, 2H), 4.84–4.83 (m, 5H), 4.77–4.76 (m, 2H), 4.33–4.31 (m, 1H), 4.20–4.17 (m, 2H), 3.71–3.19 (m, 41H), 2.43–2.41 (d, 3H). HRMS (ESI) m/z calc. for C₄₉H₇₆O₃₇S [M+H]⁺ 1311.3678; found: 1311.3638. The IR spectrum of **7** is shown in Fig. S11.

Fig. S11 IR spectrum of 7.

The ¹H NMR spectrum of **8** is shown in Fig. S12. ¹H NMR (400 MHz, CDCl₃, room temperature) δ (ppm): 5.72 (s, 14H), 4.88–4.82 (m, 7H), 4.46 (s, 6H), 3.78–3.56 (m, 31H). HRMS (ESI) m/z calc. for C₄₂H₆₉N₃O₃₄Na [M+Na]⁺ 1182.3655; found: 1182.3633. The IR spectrum of **8** is shown in Fig. S13.

Fig. S12 ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of 8.

Fig. S13 IR spectrum of 8.

The ¹H NMR spectrum of **Py-CD** is shown in Fig. S14. ¹H NMR (400 MHz, DMSOd₆, room temperature) δ (ppm): 8.78 (d, 2H), 8.70 (d, 4H), 8.23 (s, 1H), 8.06 (t, 2H), 7.93 (d, 2H), 7.59–7.52 (m, 2H), 7.27 (d, 2H), 5.72 (s, 14H), 5.21 (s, 2H), 5.05 (d, 2H), 4.90–4.76 (m, 7H), 4.69–4.56 (m, 3H), 3.65 (ddd, 29H), 3.54–3.07 (m, 64H). HRMS (ESI) m/z calc. for C₆₆H₈₆N₆O₃₅ 1523.5207; found: m/z [M+ H]⁺ 1523.5142. The IR spectrum of **Py-CD** is shown in Fig. S15.

Fig. S14 ¹H NMR spectrum (400 MHz, DMSO-d₆, room temperature) of Py-CD.

Fig. S15 IR spectrum of Py-CD.

3. Synthesis of compounds Azo-C and Azo-C₃

Scheme S3. Synthetic route of Azo-C and Azo-C₃. S3-S6

The ¹H NMR spectrum of **Azo-C** is shown in Fig. S16. ¹H NMR (400 MHz, CDCl₃, room temperature) δ (ppm): 7.92–7.87 (m, 4H), 7.53–7.47 (m, 2H), 7.44 (d, 1H), 7.00 (d, 2H), 4.04 (t, 2H), 1.86–1.78 (m, 2H), 1.27 (s, 16H), 0.91–0.86 (m, 3H). HRMS (ESI)

m/z calc. for $C_{24}H_{34}N_2O [M+H]^+ 367.2744$; found: 367.2732. The IR spectrum of Azo-C is shown in Fig. S17.

Fig. S16 ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of Azo-C.

Fig. S17 IR spectrum of Azo-C.

The ¹H NMR spectrum of **12** is shown in Fig. S18. ¹H NMR (400 MHz, CDCl₃, room temperature) δ 7.25 (d, 2H), 4.01 (m, 6H), 3.89 (s, 3H), 1.83–1.71 (m, 6H), 1.33–1.24 (m, 48H), 0.88 (t, 9H). The ¹³C NMR spectrum of **12** is shown in Fig. S19. ¹³C NMR

(125 MHz, CDCl₃, room temperature) δ (ppm): 166.97, 161.21, 152.85, 142.42, 124.67, 108.03, 73.51, 69.20, 64.15, 52.10, 29.68, 29.59, 29.51, 29.39, 29.33, 28.53, 26.08, 22.71, 14.12. HRMS (ESI) m/z calc. for C₄₄H₈₀O₅ [M+Na]⁺ 711.5898; found: 711.5883. The IR spectrum of **12** is shown in Fig. S20.

Fig. S19¹³C NMR spectrum (125 MHz, CDCl₃, room temperature) of 12.

Fig. S20 IR spectrum of 12.

The ¹H NMR spectrum of **13** is shown in Fig. S21. ¹H NMR (400 MHz, CDCl₃, room temperature) δ 7.31 (s, 2H), 4.06–4.00 (m, 6H), 1.85–1.72 (m, 6H), 1.34–1.25 (m, 49H), 0.90–0.86 (m, 9H). The ¹³C NMR spectrum of **13** is shown in Fig. S22. ¹³C NMR (125 MHz, CDCl₃, room temperature) δ (ppm): 171.48, 152.88, 143.20, 123.62, 108.61, 77.28, 77.03, 76.78, 73.58, 69.23, 63.15, 29.72, 29.66, 29.59, 29.42, 29.39, 29.31, 26.10, 26.07, 22.72, 14.13. HRMS (ESI) m/z calc. for C₄₃H₇₈O₅ [M+H]⁺ 697.5741; found: 697.5730. The IR spectrum of **13** is shown in Fig. S23.

Fig. S23 IR spectrum of 13.

The ¹H NMR spectrum of **Azo-C₃** is shown in Fig. S24. ¹H NMR (400 MHz, CDCl₃, room temperature) δ 7.99–7.96 (m, 2H), 7.92 (dd, 2H), 7.84–7.79 (m, 2H), 7.54–7.44 (m, 3H), 7.07 (s, 2H), 4.03 (q, 6H), 1.80 (m, 6H), 1.5–1.45 (m, 6H), 1.34–1.24 (m, 48H), 0.90–0.86 (m, 9H). The IR spectrum of **Azo-C₃** is shown in Fig. S26.

Fig. S24 ¹H NMR spectrum (400 MHz, CDCl₃, room temperature) of Azo-C₃.

Fig. S25 ¹³C NMR spectrum (125 MHz, CDCl₃, room temperature) of Azo-C₃.

Fig. S26 IR spectrum of Azo-C₃.

4. Particle size distributions of Azo-C and Azo-C₃.

Fig. S27 Particle size distributions of Azo-C and Azo-C₃.
5. The Tyndall effect in the series of Azo-C and Azo-C₃ THF/H₂O solutions.

Fig. S28 The Tyndall effect in the series of Azo-C (upper) and Azo-C₃ (below) THF/H₂O solutions.

6. Investigations of trans–cis photoisomerization of $Py-CD \supset Azo-C$ and $Py-CD \supset Azo-C_3$ under different irradiation conditions.

Fig. S29 UV spectra of **Py-CD⊃Azo-C** under UV light irradiation at different time points (UV light = 365 nm).

Fig. S30 UV spectra of **Py-CD** \supset **Azo-C** which had been irradiated by UV light under visible light irradiation at different time points (UV light = 365 nm, visible light = 450 nm).

Fig. S31 UV spectra of **Py-CD** \supset **Azo-C**₃ under UV light irradiation at different time points (UV light = 365 nm).

Fig. S32 UV spectra of **Py-CD** \supset **Azo-C**₃ which had been irradiated by UV light under visible light irradiation at different time points (UV light = 365 nm, visible light = 450 nm). 7. *Partial* ¹*H NMR spectra of Py-CD*, *Azo-C*, *Azo-C*₃, *Py-CD* \supset *Azo-C* and *Py-CD* \supset *Azo-C*₃.

Fig. S33 Partial ¹H NMR spectra (CHCl₃/DMSO- d_6 , room temperature, 500 MHz) of Azo-C (blue) and Py-CD \supset Azo-C (red).

Fig. S34 Partial ¹H NMR spectra (CHCl₃/DMSO- d_6 , room temperature, 500 MHz) of **Py-CD** (blue) and **Py-CD** \supset **Azo-C** (red).

Fig. S35 Partial ¹H NMR spectra (CHCl₃/DMSO- d_6 , room temperature, 500 MHz) of Azo-C₃ (red) and Py-CD \supset Azo-C₃ (blue).

Fig. S36 Partial ¹H NMR spectra (CHCl₃/DMSO- d_6 , room temperature, 500 MHz) of **Py-CD** (red) and **Py-CD** \supset **Azo-C**₃ (blue).

8. The color change of *Azo-C* and *Azo-C*₃ solutions before and after complexation.

Fig. S37 Color change of **Azo-C** (a) and **Azo-C**₃ (b) solution before and after complexation (1: **Py-CD**; 2: **Azo-C**; 3: **Py-CD** \supset **Azo-C** or **Py-CD** \supset **Azo-C**₃).

9. Cytotoxicity evaluation and internalization behavior of $Py-CD \supset Azo-C$ and $Py-CD \supset Azo-C_3$.

Fig. S38 Cytotoxicity of 293T cells by culturing with the **Py-CD** \supset **Azo-C** with different concentrations for 24 h.

Fig. S39 Cytotoxicity of 293T cells by culturing with the Py-CD⊃Azo-C₃ with different

concentrations for 24 h.

Fig. S40 Confocal images of 293T cells incubated with **Py-CD⊃Azo-C** for different time periods.

Fig. S41 Confocal images of 293T cells incubated with $Py-CD \supset Azo-C_3$ for different time periods.

References:

S1. B. Brady, N. Lynam, T. O'Sullivan, C. Ahern and R. Darcy, Org. Synth., 2000, 77, 220-224.

- S2. C. Hocquelet, J. Blu, C. K. Jankowski, S. Arseneau, D. Buisson and L. Mauclaire, *Tetrahedron*, 2006, 62, 11963–11971.
- S3. Y. M. Chabre, C. Contino-Pépin, V. Placide, T. C. Shiao and R. Roy, *J. Org. Chem.*, 2008, 73, 5602–5605.
- S4. M. D. Tzirakis, M. N. Alberti, H. Weissman, B. Rybtchinski and F. Diederich, *Chem. Eur. J.*, 2014, 20, 16070–16073.
- S5. S. Zhang, H.-J. Sun, A. D. Hughes, B. Draghici, J. Lejnieks, P. Leowanawat, A. Bertin, L. O. D. Leon, O. V. Kulikov, Y. Chen, D. J. Pochan, P. A. Heiney and V. Percec, ACS Nano., 2014, 8, 1554–1565.
- S6. J. Zou, F. Tao and M. Jiang, *Langmuir*, 2007, 23, 12791–12794.