SUPPORT INFORMATION

Design of Salt-Responsive and Regenerative Antibacterial Polymer Brushes with Integrating Bacterial Resistance, Killing, and Release

Properties

Yang Wang[†], Jiahui Wu[†], Dong Zhang[¶], Feng Chen[†], Ping Fan[†], Mingqiang Zhong[†],

Shengwei Xiao[‡], Yung Chang^I, Xiong Gong^ζ, Jintao Yang^{*†}, and Jie Zheng^{*¶}

[†]College of Materials Science& Engineering Zhejiang University of Technology, Hangzhou 310014, China

[‡] School of Pharmaceutical and Chemical Engineering Taizhou University, Jiaojiang 318000, China

⁷Department of Chemical Engineering R&D Center for Membrane Technology Chung Yuan Christian University, Chungli, Taiwan

^ζ Department of Polymer Engineering The University of Akron, Akron, Ohio 44325, USA

[¶] Department of Chemical and Biomolecular Engineering The University of Akron, Akron, Ohio 44325, USA

*Corresponding Author: (J.Y.) <u>vangjt@zjut.edu.cn; (J.Z.)</u> <u>zhengj@uakron.edu</u>

Keywords: Antibacterial surface; Polymer brushes; Antifouling; Antibacterial; Bacteria release

Figure S1. Fluorescence microscopy images of *E. coli* on pure silicon wafer upon different incubation times, followed by the treatment with 1.0 M NaCl solution.

Figure S2. Overall antibacterial performance combining bacterial resistance, killing, and release of polyDVBAPS/polyHEAA-based brushes using *S. aureus*. (a) Representative fluorescence microscopy images (scale bar is 20 μ m) and (b) the corresponding statistical results of *S. aureus* on polyHEAA, polyDVBAPS₁/polyHEAA, polyDVBAPS₂/polyHEAA, polyDVBAPS₂/polyHEAA, polyDVBAPS₂/poly(HEAA-g-TCS) brushes at di□erent incubation times. (c) Comparison of bacterial density before and after the treatment of 1.0 M NaCl solution to determine bacterial release ratio.

Figure S3. Overall antibacterial performance (e.g. antifouling, bactericidal, and bacteria release properties) and salt-induced surface regeneration of polyDVBAPS₂/polyHEAA brush in multiple and reversible cycles, as evidenced by fluorescence microscopy images (scale bar=20 μ m) and the corresponding live/dead cell analysis for (a) *E. coli* and (b) *S. aureus*. (c) Cyclic bacterial killing and release of polyDVBAPS₂/polyHEAA brush against *E. coli* and *S. aureus* upon the treatment of 1.0 M NaCl solution.

Figure S4. Overall antibacterial performance (e.g. antifouling, bactericidal, and bacteria release properties) and salt-induced surface regeneration of polyHEAA brush in multiple and reversible cycles, as evidenced by fluorescence microscopy images (scale bar=20 μ m) and the corresponding live/dead cell analysis for (a) *E. coli* and (b) *S. aureus*.

Figure S5. Overall antibacterial performance (e.g. antifouling, bactericidal, and bacteria release properties) and salt-induced surface regeneration of poly(DVBAP-b-HEAA) brush in multiple and reversible cycles, as evidenced by fluorescence microscopy images (scale bar=20 μ m) and the corresponding live/dead cell analysis for (a) *E. coli* and (b) *S. aureus*. (c) Cyclic bacterial killing and release of poly(DVBAP-b-HEAA) brush against *E. coli* and *S. aureus* upon the treatment of 1.0 M NaCl solution.