CAPRYDAA, an anthracene dye analog to LAURDAN: a comparative study using cuvette and microscopy

Vicente Castro-Castillo¹, Javier Gajardo¹, Catalina Sandoval-Altamirano¹, Enrico Gratton², Susana Sanchez³, Leonel Malacrida²,⁴*, German Gunther¹*

¹ Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Físicoquímica, Casilla 233, Santiago 1, Chile.
² Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California at Irvine, Irvine, CA, USA.
³ Universidad de Concepción, Facultad de Química, Departamento de Polímeros, Concepción, Chile.
⁴ Departamento de Fisiopatología, Unidad de Microscopía Avanzada y Bifotónica, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

Organic Synthesis

The synthetic procedures to obtain compounds (2), (3), (4), (5) and final compound (6), are detailed below:

2,6-Dibromo-9,10-anthraquinone (2). To a mixture of 1 (0.10 g, 0.42 mmol) and CuBr₂ (0.23 mg, 1.04 mmol) in CH₃CN (5 mL) was added dropwise to tert-butyl nitrite (0.12 mL, 1.04 mmol). The mixture was kept at 90 °C for 24 h. The reaction was quenched by adding HCl (aq) 20% (six drops). The precipitate formed was filtered, washed with cold CH₃CN to afford 2 (145 mg, 94% yield) as a pale brown solid. MP: > 300 °C (Mp Lit. >300 °C).¹ ¹H NMR (200 MHz, CDCl₃): δ 8.34 (d, J = 2.8 Hz, 2H), 8.16 (d, J = 8.9 Hz, 2H), 7.94 (dd, J = 9.0, 2.9 Hz, 2H).

2-Bromo-6-dimethylamino-9,10-anthraquinone (3). A mixture of 2 (1.50 g, 4.1 mmol) and anhydrous CsF (0.80 g, 5.3 mmol) in 60 mL of anhydrous DMSO was heated with magnetic stirring at 170 °C under a nitrogen atmosphere for 5 h. The mixture was cooled to room temperature, an aqueous solution (40%) of dimethylamine (0.62 mL, 4.9 mmol) and K₂CO₃ (0.68 g, 4.9 mmol) was added, and then all was stirred at 70 °C for 17 h. The mixture was poured into 50 mL of water and the precipitate formed was collected by filtration. The solid residue was separated by chromatography with CHCl₃ as eluent, to afford 3 (476 mg, 35% yield) as a red solid. Mp: 223 °C.¹ ¹H NMR (200 MHz, DMSO-d₆): δ 8.21 (d, J = 2.5 Hz, 1H, ArH), 8.5 (m, 3H, ArH), 7.31 (d, J = 2.5 Hz, 1H,
ArH), 7.14 (dd, J = 8.9, 2.6 Hz, 1H, ArH), 3.15 (s, 6H, CH₃). ¹³C NMR (100 Hz, DMSO-d₆): δ 183.12, 179.45, 154.50, 136.66, 135.50, 134.49, 132.48, 129.88, 129.33, 129.26, 120.86, 116.77, 108.11, 99.94, 40.25.

2-Bromo-6-(N,N-dimethylamino)anthracene (4). To a suspension of 3 (1.60 g, 4.83 mmol) in i-PrOH (180 mL) was added NaBH₄ (8.0 g, 0.212 mol) at room temperature. The reaction mixture was stirred for 12 h and then heated under reflux for 10 h. After cooling to room temperature, the reaction was neutralized with 6 M HCl until bubbling ceased and was then heated under reflux for 2 h. The precipitate formed was discarded and the solvent was removed by evaporation. The residue was dissolved in i-PrOH (120 mL) and treated with another portion of NaBH₄ (5.5 g, 0.146 mol). The reaction mixture was refluxed for 12 h. After cooling, the reaction mixture was neutralized with 6 M HCl until bubbling ceased. The precipitate was again discarded, and the solvent removed. The solid residue was separated by chromatography with CHCl₃ as eluent, to afford 4 (978 mg, 67% yield) as a yellow solid. Mp: 200 °C. ¹H NMR (200 MHz, CDCl₃): δ 8.31 (m, 2H, ArH) 2.0 Hz, 1H), 8.14 (s, 1H, ArH), 7.90 (m, 2H, ArH), 7.42 (d, J = 8.8 Hz, 1H, ArH), 7.33 (d, J = 9.3 Hz, 1H, ArH), 6.95 (s, 1H, ArH), 3.14 (s, 3H, CH₃). ¹³C NMR (100 Hz, CDCl₃): δ 145.31, 135.48, 132.57, 132.46, 129.97, 128.80, 128.33, 128.17, 125.19, 122.64, 121.54, 119.60, 108.58, 100.12, 43.76 (CH₃).

2-Cyano-6-(N,N-dimethylamino)anthracene (5). A mixture of 4 (200 mg, 0.66 mmol) and CuCN (354 mg, 3.96 mmol) in 20 mL of anhydrous DMF was heated under reflux in a nitrogen atmosphere for 12 h. The reaction mixture was cooled to room temperature and treated with 1.0 mL of ethylenediamine and 10 mL of water at 50 °C and stirred for a half hour. Water (30 mL) was added, and the precipitate formed was collected by filtration. The solid residue was separated by chromatography with ethyl acetate/hexane (1:3) as eluent to afford 5 (50 mg, 30% yield) as a yellow solid. Mp: 209 °C. ¹H NMR (200 MHz, CDCl₃): δ 8.27 (m, 2H, ArH) 2.0 Hz, 1H), 8.10 (s, 1H, ArH), 7.87 (m, 2H, ArH), 7.39 (d, J = 8.7 Hz, 1H, ArH), 7.31 (d, J = 9.3 Hz, 1H, ArH), 6.92 (s, 1H, ArH), 3.13 (s, 6H, CH₃). ¹³C NMR (100 Hz, CDCl₃): δ 148.98, 135.92, 135.68, 132.45, 129.64, 121.54, 127.65, 127.50, 127.38, 124.47, 122.95, 120.18, 118.95, 106.27, 103.43, 40.6 (CH₃).

1-(6-(Dimethylamino)anthracene-2-yl)nonan-1-one (6). To a mixture of 5 (80 mg, 0.32 mmol) and a trace of CuBr in anhydrous THF (60 mL) was added an excess of octylmagnesium bromide solution in anhydrous THF at room temperature under a nitrogen atmosphere. The reaction flask was fully covered with aluminum foil to avoid possible photoreactions and the solution was stirred
for 1 h at room temperature. The reaction mixture was treated with 6 M HCl until pH 2 was reached and was heated under reflux for 2 h. It was then cooled and neutralized with a saturated solution of NaHCO₃. Water (10 mL) was added, and the resulting mixture was extracted with dichloromethane. The organic layer was dried (Na₂SO₄), concentrated, and the solid residue was separated by chromatography with hexane/CHCl₃ (2:1) as eluent to afford 6 (21 mg, 19% yield) as an orange solid. Mp: 126 °C. Elemental Analysis: Calculated (experimental) values are: C, 83.06 (83.32); H, 8.64 (8.42); N, 3.87 (3.64) % and O, 4.43 (4.62) %. ¹H NMR (200 MHz, CDCl₃): δ 8.57 (s, 1H, ArH), 8.40 (s, 1H, ArH), 8.14 (s, 1H, ArH), 7.91 (m, 3H, ArH), 7.30 (d, J = 8.7 Hz, 1H, ArH), 6.96 (s, 1H, ArH), 3.13 (s, 6H, CH₃), 3.10 (t, J = 7.8 Hz, 2H), 1.81 (m, 2H), 1.29 (m, 10H), 0.89 (m, 3H). ¹³C NMR (100 Hz, CDCl₃): δ 200.44, 148.68, 135.34, 133.57, 132.18, 131.44, 129.50, 128.75, 128.06, 127.81, 127.05, 122.87, 122.53, 118.36, 103.78, 40.66, 38.45, 31.89, 29.72, 29.52, 29.24, 24.85, 22.69, 14.14.
Figure S1 1H-NMR of 2-Bromo-6-dimethylamino-9,10-anthraquinone (3).
Figure S2 13C-NMR of 2-Bromo-6-dimethylamino-9,10-anthraquinone (3).
Figure S3 1H-NMR of 2-Bromo-6-(N,N-dimethylamino)anthracene (4).
Figure S4 13C-NMR of 2-Bromo-6-(N,N-dimethylamino)anthracene (4).
Figure S5 1H-NMR of 2-Cyano-6-(N,N-dimethylamino)anthracene (5).
Figure S6 13C-NMR of 2-Cyano-6-(N,N-dimethylamino)anthracene (5).
Figure S7 1H-NMR 1-(6-(Dimethylamino)anthracene-2-yl)nonan-1-one (6).
Figure S8 13C-NMR 1-(6-(Dimethylamino)anthracene-2-yl)nonan-1-one (6).
Figure S9 CAPRYDA emission response to temperature in DPPC SUVs.
Figure S10: GP analysis of the CAPRYDAA fluorescence in NIH-3T3 cells. A) Intensity image obtained as average of the hyperspectral image in figure 8. B) Average spectra of the figure A where the blue and green channels used for the GP calculation are shown. The intensity on these channels was averaged to obtain the blue and green channels shows in C and D. The GP image (E) was calculated using an ImageJ plugin develop by Bob Dougherty and Jesper Søndergaard Hansen (https://www.optinav.info/Generalized_Polarization_Analysis.htm). F) The GP histogram shows the distribution of GP (in gray log scale was used).
Figure S11: “Classic” FLIM analysis of CAPRYDAA fluorescence in NIH-T3T cells. A) Intensity image of CAPRYDAA fluorescence. B) Histogram of tau modulation. Notice that the color scale in the histogram trace was used for the FLIM image in C.