Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

For

Self-assembled nanofibers of perylene diimide for detection of hypochlorite in water, bio-fluids and solid state: Exogenous and endogenous bioimaging of hypochlorite in cells

Kapil Kumar^a, Sandeep Kaur^b, Satwinderjeet Kaur^b, Gaurav Bhargava^c, Subodh Kumar^a and Prabhpreet Singh^{a*}

^aDepartment of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar (Pb) 143 005, India.

e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534

^bDepartment of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India. ^cDepartment of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India.

Experimental Section

-5.532 5.5067 5.5067 5.5067 5.5028 5.

Figure S1a: ¹H NMR spectrum of PDI-DAMN.

Figure S1b: ¹³C NMR spectrum of PDI-DAMN.

Figure S1c: HSQC NMR spectrum of PDI-DAMN.

Figure S1d: COSY NMR spectrum of PDI-DAMN.

HRMS (ESI) m/z for C₄₇H₃₉N₇O₄ [M+CH₃CN+H]⁺ calcd. 765.3064, found 766.5378 Figure S1e: HRMS data of PDI-DAMN.

HRMS (ESI) m/z for C₄₁H₃₄N₂O₅ [PDI 2]⁺ calcd. 634.2468, found 634.4560.

Figure S2: HRMS data of PDI 2.

Figure S3: The effect of pH on the (a) absorbance (10 μ M) and (b) fluorescence (1 μ M) spectrum of **PDI-DAMN** recorded in CH₃CN:H₂O (1:1, v/v); $\lambda_{ex} = 490$ nm, slit width Ex/Em = 8 nm/6 nm.

Figure S4. (a) Absorbance (10 μ M) spectra of **PDI-DAMN** showing selectivity towards ClO⁻ in HEPES buffer-CH₃CN (1:1, v/v, pH 7.4) among different substances (100 μ M); (b) bar graph representation.

Figure S5. (a) Fluorescence (1 μ M) spectra of **PDI-DAMN** showing selectivity towards ClO⁻ in HEPES buffer-CH₃CN (1:1, v/v, pH 7.4) among different substances (10 μ M); (b) bar graph representation, $\lambda_{ex} = 490$ nm, slit width Ex/Em = 8 nm/6 nm.

Figure S6. (a) Absorbance (10 μ M) spectra of **PDI-DAMN** showing selectivity towards ClO⁻ in HEPES buffer-CH₃CN (1:1, v/v, pH 7.4) among different analytes (100 μ M); (b) bar graph representation.

Figure S6a. (a) Fluorescence (1 μ M) spectra of **PDI-DAMN** showing selectivity towards ClO⁻ in HEPES buffer-CH₃CN (1:1, v/v, pH 7.4) among different analytes (10 μ M); (b) bar graph representation, $\lambda_{ex} = 490$ nm, slit width Ex/Em = 8 nm/6 nm.

Figure S7. (a) Absorbance (10 μ M) and (b) emission (1 μ M) spectra of PDI **2** recorded in HEPES buffer-CH₃CN (1:1 v/v, pH 7.4) after incremental addition of ClO⁻.

Fig. S8 Fluorescent imaging of exogenous ClO- in MG-63 cells; bright field image of MG-63 cells after incubation with (a) **PDI-DAMN** alone; (d) **PDI-DAMN** + ClO- (20 μ M); (g) **PDI-DAMN** + ClO- (40 μ M); (b) fluorescent images of MG-63 cells incubated with **PDI-DAMN** for 30 min; (c) overlapped region image of (a) and (b); (e) MG-63 cells were incubated with **PDI-DAMN** (10 μ M) for 30 min, and then with ClO- (20 μ M) for another 30 min; (f) overlapped region image of (d) and (e); (h) MG-63 cells were incubated with **PDI-DAMN** (10 μ M) for another 30 min; (i) overlapped region image of (d) and (e); (h) MG-63 cells were incubated with **PDI-DAMN** (10 μ M) for another 30 min; (i) overlapped region image of (g) and (h). All images have been taken at magnification 20X.

Fig. S9 Fluorescent imaging of endogenous CIO⁻ in MG-63 cells; bright field image of MG-63 cells after incubation with (a) **PDI-DAMN** alone; (d) **PDI-DAMN** + (LPS) (2 μ g/ml) and (PMA) (2 μ g/ml) (g) **PDI-DAMN** + (LPS) (5 μ g/ml) and (PMA) (5 μ g/ml); (b) fluorescent images of MG-63 cells incubated with **PDI-DAMN** for 30 min; (c) overlapped region image of (a) and (b); (e) MG-63 cells incubated with (LPS) (2 μ g/ml) and (PMA) (2 μ g/ml) for 30 min, and then with **PDI-DAMN** for another 30 min; (f) overlapped region of (d) and (e) ; (h) MG-63 cells incubated with (LPS) (5 μ g/ml) and (PMA) (5 μ g/ml) for 30 min, and then with **PDI-DAMN** for another 30 min; (f) overlapped region of (d) and (e) ; (h) MG-63 cells incubated with (LPS) (5 μ g/ml) and (PMA) (5 μ g/ml) for 30 min, and then with **PDI-DAMN** for another 30 min; (i) overlapped region of (g) and (h). All images have been taken at magnification 20X.

Figure S10. (a,c) Absorbance spectra; (b,d) plot of absorbance of **PDI-DAMN** recorded in HEPES buffer– CH_3CN (1:1 v/v, pH 7.4, containing 10% human blood serum and urine) after the incremental addition of ClO⁻.

Figure S11. (a,c) Fluorescence spectra; (b,d) plot of FI of **PDI-DAMN** recorded in HEPES buffer– CH₃CN (1:1 v/v, pH 7.4, containing 10% human blood serum and urine) after the incremental addition of ClO⁻.

Figure S12. (a) Absorbance spectra and (b) plot of absorbance recorded in HEPES buffer–CH₃CN (1:1 v/v, pH 7.4), containing 10% human blood serum and different concentrations of ClO⁻, following the addition of **PDI-DAMN**.

Figure S13. (a) Absorbance spectra recorded in HEPES buffer– CH_3CN (1:1 v/v, pH 7.4), containing 50% human blood serum and different concentrations of ClO⁻, followed by the addition of **PDI-DAMN**.

Figure S14. (a) Absorbance spectra and (b) plot of absorbance recorded in HEPES buffer–CH₃CN (1:1 v/v, pH 7.4), containing 10% human urine and different concentrations of ClO⁻, followed by addition of **PDI-DAMN**.

Figure S15. (a) Absorbance spectra recorded in HEPES buffer–CH₃CN (1:1 v/v, pH 7.4), containing 50% human urine and different concentrations of ClO⁻, followed by addition of **PDI-DAMN**.

Figure S16. (a) Fluorescence spectra and (b) plot of fluorescence recorded in HEPES buffer– CH_3CN (1:1 v/v, pH 7.4), containing 10% human blood serum and different concentrations of ClO⁻, followed by the addition of **PDI-DAMN**.

Figure S17. (a) Fluorescence spectra and (b) plot of fluorescence recorded in HEPES buffer– CH_3CN (1:1 v/v, pH 7.4), containing 50% human blood serum and different concentrations of ClO⁻, followed by the addition of **PDI-DAMN**.

Figure S18. (a) Fluorescence spectra and (b) plot of fluorescence recorded in HEPES buffer– CH₃CN (1:1 v/v, pH 7.4), containing 10% human urine and different concentrations of ClO⁻, followed by the addition of **PDI-DAMN**.

Figure S19. (a) Fluorescence spectra recorded in HEPES buffer–CH₃CN (1:1 v/v, pH 7.4), containing 50% human urine and different concentrations of ClO⁻, followed by the addition of **PDI-DAMN**.