Supporting Information

Polyphosphazene-based nanocarriers for diosgenin and agrochemicals release

Javier Pérez Quiñones,* Aitziber Iturmendi, Helena Henke, Cornelia Roschger, Andreas Zierer and Oliver Brüggemann

a Institute of Polymer Chemistry (ICP), Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria. * E-mail: javenator@gmail.com

b Johannes Kepler University Linz, Kepler University Hospital GmBH, Department for Cardiac-, Vascular- and Thoracic Surgery, Altenberger Str. 69, 4040 Linz and Krankenhausstrasse 9, 4020 Linz, Austria.

E-mail: javenator@gmail.com

1. Supporting Tables

Table SI-1. Linear fitting parameters of in vitro release profiles of polymers P1-P5 up to 8 h (intercept 0, slope k, adjusted R-Square) in PBS (pH 6.0) at 25 °C

<table>
<thead>
<tr>
<th>Samples</th>
<th>k</th>
<th>Adjusted R-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1.34 ± 0.09</td>
<td>0.9786</td>
</tr>
<tr>
<td>P2</td>
<td>2.5 ± 0.1</td>
<td>0.9833</td>
</tr>
<tr>
<td>P3</td>
<td>(1.72 ± 0.06)</td>
<td>0.9978</td>
</tr>
<tr>
<td>P4</td>
<td>(1.65 ± 0.07)</td>
<td>0.9899</td>
</tr>
<tr>
<td>P5</td>
<td>3.7 ± 0.5</td>
<td>0.9132</td>
</tr>
</tbody>
</table>

2. Synthesis of materials, monomer and polymers

Synthesis of diosgenin-glycine-NH₂ (1). Boc-protected amino acid Boc-Gly-OH (0.13 g, 0.72 mmol), 4-(dimethylamino)pyridine (0.09 g, 0.72 mmol) and N,N'-dicyclohexylcarbodiimide (0.19 g, 0.72 mmol) were dissolved in 20 mL CH₂Cl₂ and stirred at room temperature for 2 h. The reaction mixture was added to a solution of diosgenin (0.30 g, 0.72 mmol) in 10 mL CH₂Cl₂ and stirred for 48 h. The precipitated N,N'-dicyclohexylurea was removed by filtration and the filtrated was extracted with 10% NH₄Cl aqueous solution (2 × 15 mL), with 5% NaHCO₃ aqueous solution (2 × 15 mL) and saturated NaCl solution (1 × 15 mL). The organic phase was dried over MgSO₄, filtered and removed under reduced pressure to yield diosgenin-glycine-Boc as a white solid (0.27 g, yield 65%). Then, diosgenin-glycine-Boc (0.27 g, 0.47 mmol) was dissolved in 10 mL of CH₂Cl₂. CF₃COOH (1 mL, 13.10 mmol) was added dropwise to the diosgenin-glycine-Boc solution and stirred at room temperature overnight. The excess of CF₃COOH and the solvent were removed under reduced pressure, CH₂Cl₂ was added and
removed under reduced pressure twice. The remnant solid was dissolved again in 30 mL of
CH$_2$Cl$_2$ and washed with 5% NaHCO$_3$ aqueous solution (2 × 15 mL), saturated NaCl solution (1
× 15 mL) and dried over MgSO$_4$. The CH$_2$Cl$_2$ was removed under reduced pressure, to obtain
diosgenin-glycine-NH$_2$ (1) as a white powder (0.19 g, yield 85%).

Synthesis of monomer trichlorophosphoranimine (Cl$_3$P=N–Si(CH$_3$)$_3$). Lithium
bis(trimethylsilyl)amide (LiN(Si(CH$_3$)$_3$)$_2$) (25.00 g, 149.41 mmol) was dissolved in 500 mL of
anhydrous Et$_2$O under Ar atmosphere, cooled to 0-4 °C with ice bath and stirred for 0.5 h.
13.07 mL of PCl$_3$ (20.52 g, 149.41 mmol) were slowly added dropwise with a 20 mL syringe,
while reaction mixture was stirred at 0-4 °C. Then, the reaction mixture was stirred at room
temperature for 1 h. The solution was cooled to 0-4 °C with ice bath for a second time, 12.1
ml of SO$_2$Cl$_2$ (20.17 g, 149.41 mmol) were added dropwise and the mixture was stirred for 1
h at 0-4 °C. Then, the reaction mixture was fast filtered over Celite and Et$_2$O was removed
under reduced pressure at room temperature. The purification of the product was carried out
via vacuum distillation with a Büchi glass oven (Büchi Labortechnik, Switzerland) at 40 °C
under reduced pressure of 4 mbar to obtain Cl$_3$P=N–Si(CH$_3$)$_3$ as a colourless liquid. The
monomer was stored under Ar atmosphere at -35 °C in the glovebox (18.00 g, yield 54%).

1H NMR (300 MHz, CDCl$_3$): $\delta = 0.16$ (s, 9H) ppm; 31P{1H} NMR (121 MHz, CDCl$_3$): $\delta = -54.2$ ppm.

Synthesis of the polymer P1. (C$_6$H$_5$)$_3$PCl$_2$ (2.08 mg, 0.006 mmol) and Cl$_3$P=N–Si(CH$_3$)$_3$ (35.00
mg, 0.15 mmol) were dissolved in 1 mL of anhydrous CH$_2$Cl$_2$ and stirred at room temperature
overnight. Then, the obtained poly(dichloro)phosphazene (yield quantitative) was transferred
to another flask with diosgenin-glycine-NH$_2$ (1) (73.60 mg, 0.16 mmol) and an excess of Et$_3$N
(72.6 mg, 0.72 mmol) in 10 mL of anhydrous THF, and stirred at room temperature for 24 h.
Afterwards, the second post-polymerisation functionalisation was carried out with Jeffamine
M1000. An excess of Jeffamine M1000 (0.22 g, 0.22 mmol) and Et$_3$N (108.9 mg, 1.08 mmol)
were added to the mixture and allowed to react another 24 h. Once the reaction was
completed, the solvent was removed under reduced pressure and the product was purified
by dialysis against deionised water (3 L, 1 time, 10 hours) and EtOH (750 mL, 10 times, 5 days).
The EtOH was removed with N$_2$ flow and the polymer was further dried under vacuum to give
the polymer P1 as a colorless waxy solid (101.3 mg, yield 36%).

3. Characterisation data for materials and polymers P1-P6

Diosgenin-glycine-NH$_2$ (1): ATR-FTIR (solid) ν max: 2943 (C–H), 1726 (C=O), 1602 (N–H
bending), 1557 (N–H bending), 1453 (C–H bending), 1212 (C=O) cm$^{-1}$; 1H NMR (300 MHz,
298 K, CDCl$_3$): $\delta = 0.79$ (t, 6H, $J = 3.1$ Hz, H18 + H27), 0.97 (d, 3H, $J = 6.9$ Hz, H21), 1.03 (s, 3H,
H19), 3.37 (t, 1H, $J = 10.8$ Hz, H26ax), 3.42 (s, 2H, NH$_2$–CH$_2$–COO–), 3.47 (m, 1H, H26eq), 4.41
(q, 1H, $J = 7.4$ Hz, H16α), 4.66 (m, 1H, H3α), 5.38 (d, 1H, $J = 4.7$ Hz, H6) ppm; 13C NMR (75
MHz, CDCl$_3$): $\delta = 14.7$ (C21), 16.4 (C18), 17.3 (C27), 19.5 (C19), 21.0 (C11), 27.9 (C2), 29.0 (C24),
30.4 (C8 + C25), 32.0 (C23), 32.2 (C7), 34.1 (C15), 36.9 (C10), 37.1 (C1), 38.2 (C4), 39.9 (C12),
40.4 (C13), 41.8 (C20), 44.1 (NH$_2$–CH$_2$–COO–), 50.1 (C9), 56.6 (C14), 62.2 (C17), 67.0 (C26),
74.8 (C3), 80.9 (C16), 109.4 (C22), 122.7 (C6), 139.6 (C5), 156.8 (CF3COO–), 173.4 (C=O) ppm. It must be noted the presence of characteristic 13C chemical shifts of CF3COO– related to obtaining steroid-glycine-NH2 compounds as [steroid-glycine-NH3+] [CF3COO–].

Di31-glycine-NH2 (2): ATR-FTIR (solid) υ max: 3325 (N–H), 2929 (C–H), 1736 (C=O), 1713 (C=O, ketone C6 of Di31), 1627 (N–H bend), 1578 (N–H bend), 1454 (C–H bend), 1216 (C–O–C) cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.75 (s, 3H, H18), 0.78 (d, J = 6.4 Hz, H27), 0.82 (s, 3H, H19), 0.96 (d, J = 6.7 Hz, H21), 2.77 (t, J = 12.1 Hz, H7α), 3.35 (t, J = 10.7 Hz, H26 ax), 3.45 (m, 3H, H26 eq + NH2–CH2–COO–), 4.40 (m, 1H, H16α), 5.09 (m, 1H, H3α) ppm; 13C NMR (75 MHz, CDCl3): δ = 14.1 (C19), 14.6 (C21), 16.5 (C18), 17.3 (C27), 21.3 (C11), 26.4 (C2), 28.9 (C24), 29.6 (C1), 30.4 (C25), 31.5 (C23), 31.7 (C15), 32.5 (C4), 36.9 (C8), 39.7 (C12), 41.2 (C13), 41.7 (C20), 41.9 (C7), 42.6 (C10), 44.0 (NH2–CH2–COO–), 44.4 (C9), 56.2 (C14), 62.2 (C17), 67.0 (C26), 71.6 (C3), 80.2 (C5), 80.6 (C16), 109.4 (C22), 157.1 (CF3COO–), 172.8 (C=O, glycine), 212.2 (C=O, C6) ppm.

S7-glycine-NH2 (3): ATR-FTIR (solid) υ max: 3321 (N–H), 2934 (C–H), 1711 (C=O, ketone C6 of S7), 1625 (N–H bend), 1574 (N–H bend), 1448 (C–H bend), 1212 (C–O–C) cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.64 (s, 3H, H18), 0.80 (s, 3H, H19), 0.93 (m, 6H, H26 + H27), 0.98 (t, 3H, J = 6.6 Hz, H29), 1.00 (m, 3H, H21), 2.50 (m, 1H, H22), 2.73 (m, 1H, H23), 3.40 (s, 2H, NH2–CH2–COO–), 5.10 (m, 1H, H3α) ppm; 13C NMR (75 MHz, CDCl3): δ = 12.2 (C18), 12.6 (C29), 14.1 (C19), 16.5 (C21), 19.2 (C19), 19.4 (C26), 21.5 (C11 + C28), 25.8 (C15), 26.4 (C2), 29.3 (C25), 29.4 (C16), 29.7 (C1), 32.6 (C4), 37.5 (C8), 39.7 (C12), 39.9 (C20), 41.9 (C7), 42.6 (C10), 43.3 (C13), 44.0 (NH2–CH2–COO–), 44.4 (C9), 49.3 (C24), 56.0 (C17), 56.5 (C14), 62.6 (C22 + C23), 71.8 (C3), 80.3 (C5), 156.9 (CF3COO–), 173.8 (C=O, glycine), 212.5 (C=O, C6) ppm.

Polymer P1: ATR-FTIR (solid) υ max: 3339 (N–H), 2870 (C–H), 1741 (C=O), 1452 (C–H bending), 1100 (C–O–C), 1050 (P=N) cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.77 (s, 6H, H18 + H27), 0.95 (d, 3H, J = 6.5 Hz, H21), 0.99 (s, 3H, H19), 1.10 (br, 6H, –O–CH2–CH(CH3)– of Jeffamine M1000), 3.36 (s, 3H, CH3O– end groups of Jeffamine M1000), 3.62 (m, 35H, polyalkylene oxide –CH2– of Jeffamine M1000), 4.39 (m, 1H, H16α), 4.53 (m, 1H, H3α), 5.32 (s, 1H, H6), 7.60 (d, 0.65H, protons of (C6H5)3P=N end group) ppm; 31P{1H} NMR (121 MHz, CDCl3): δ = 0.6 ppm; 13C NMR (75 MHz, CDCl3): δ = 14.7 (C21), 16.4 (C18), 17.3 (C27), 19.5 (C19), 20.9 (C11), 27.8 (C2), 28.9 (C24), 30.4 (C8 + C25), 32.0 (C23), 32.2 (C7), 33.8 (C15), 36.8 (C10), 38.1 (C4), 39.9 (C12), 40.4 (C13), 41.7 (C20), 45.2 (–NH–CH2–COO–), 50.1 (C9), 56.7 (C14), 59.1 (–O–CH2–CH(CH3)– of Jeffamine M1000), 62.3 (C17), 66.9 (C26), 70.7 (–O–CH2–CH2–O– of Jeffamine M1000), 72.0 (–O–CH2–CH(CH3)– of Jeffamine M1000), 74.3 (C3), 80.8 (C16), 109.3 (C22), 122.4 (C6), 139.8 (C5), 171.7 (C=O) ppm. GPC (g mol−1) Mn = 9586, Mw = 13134. Glass transition temperature (Tg) = -17.2 °C.

Polymer P2: ATR-FTIR (solid) υ max: 3312 (N–H), 2867 (C–H), 1740 (C=O), 1453 (C–H bend), 1100 (C–O–C), 1052 (P=N) cm−1; 1H NMR (300 MHz, CDCl3): δ = 0.77 (s, 6H, H18 + H27), 0.95 (d, 3H, J = 6.3 Hz, H21), 1.00 (s, 3H, H19), 1.11 (br, 14H, CH3– of PPO groups of Jeffamine
M-1000), 3.36 (s, 6H, CH₂O– end groups of Jeffamine M-1000), 3.63 (m, 119H, polyalkylene oxide –CH₂–), 4.40 (m, 1H, H₁₆α), 5.32 (s, 1H, H₆), 7.61 (d, 0.68H, (C₆H₅)₃P=N– end group) ppm; 31P NMR (121 MHz, CDCl₃): $\delta = 0.8$ ppm. GPC (g mol⁻¹) $M_n = 15048$, $M_w = 22121$. $(T_g) = -13.5$ °C, melting temperature $(T_m) = 17.9$ °C.

Polymer P₃: ATR-FTIR (solid) ν max: 3327 (N–H), 2869 (C–H), 1741 (C=O), 1453 (C–H bend), 1098 (C–O–C), 1051 (P=N) cm⁻¹; 1H NMR (300 MHz, CDCl₃): $\delta = 0.77$ (s, 6H, H₁₈ + H₂₇), 0.95 (d, 3H, $J = 6.3$ Hz, H₂₁), 1.11 (br, 6H, CH₃– of PPO groups of Jeffamine M-1000), 3.36 (s, 3H, CH₂O– end groups of Jeffamine M-1000), 3.62 (m, 108H, polyalkylene oxide –CH₂–), 4.38 (m, 1H, H₁₆α), 5.32 (s, 1H, H₆), 7.61 (d, 0.44H, (C₆H₅)₃P=N– end group) ppm; 31P NMR (121 MHz, CDCl₃): $\delta = 0.8$ ppm. GPC (g mol⁻¹) $M_n = 11926$, $M_w = 15624$. $T_g = -60.8$ °C.

Polymer P₄: ATR-FTIR (solid) ν max: 3518 (O–H), 3316 (N–H), 2868 (C–H), 1734 (C=O), 1714 (C=O of ketone), 1454 (C–H bend), 1104 (C–O–C), 1040 (P=N) cm⁻¹; 1H NMR (300 MHz, CDCl₃): $\delta = 0.78$ (s, 9H, H₁₈ + H₁₉ + H₂₇), 0.94 (s, 3H, H₂₁), 1.11 (br, 14H, CH₃– of PPO groups of Jeffamine M-1000), 3.36 (s, 6H, CH₂O– end groups of Jeffamine M-1000), 3.63 (m, 108H, polyalkylene oxide –CH₂–), 4.38 (m, 1H, H₁₆α), 7.60 (d, 0.75H, (C₆H₅)₃P=N– end group) ppm; 31P NMR (121 MHz, CDCl₃): $\delta = 0.8$ ppm. GPC (g mol⁻¹) $M_n = 14108$, $M_w = 19046$. $T_g = -14.1$ °C, $T_m = 20.9$ °C.

Polymer P₅: ATR-FTIR (solid) ν max: 3303 (N–H), 2867 (C–H), 1734 (C=O), 1714 (C=O of ketone), 1455 (C–H bend), 1103 (C–O–C), 1038 (P=N) cm⁻¹; 1H NMR (300 MHz, CDCl₃): $\delta = 0.62$ (s, 3H, H₁₈), 0.77 (s, 3H, H₁₉), 0.81 (d, 3H, $J = 6.6$ Hz, H₂₁), 0.91 (m, 9H, H₂₆ + H₂₇ + H₂₉), 1.11 (br, 15H, CH₃– of PPO groups of Jeffamine M-1000), 3.35 (s, 6H, CH₂O– end groups of Jeffamine M-1000), 3.62 (m, 137H, polyalkylene oxide –CH₂–), 5.06 (s, 1H, H₃α), 7.60 (d, 0.67H, (C₆H₅)₃P=N– end group) ppm; 31P NMR (121 MHz, CDCl₃): $\delta = 0.8$ ppm. GPC (g mol⁻¹) $M_n = 13016$, $M_w = 19524$. $T_g = -13.6$ °C, $T_m = 17.6$ °C.

Polymer P₆: ATR-FTIR (solid) ν max: 3300 (N–H), 2883 (C–H), 1459 (C–H bend), 1108 (C–O–C), 1041 (P=N) cm⁻¹; 1H NMR (300 MHz, CDCl₃): $\delta = 1.12$ (br, 14H, CH₃– of PPO groups of Jeffamine M-1000), 3.36 (s, 6H, CH₂O– end groups of Jeffamine M-1000), 3.63 (m, 148H, polyalkylene oxide –CH₂–), 7.60 (d, 0.66H, (C₆H₅)₃P=N– end group) ppm; 31P NMR (121 MHz, CDCl₃): $\delta = 1.0$ ppm. GPC (g mol⁻¹) $M_n = 10783$, $M_w = 15489$. $T_g = -18.1$ °C, $T_m = 27.9$ °C.

4. Supporting Figures
Figure SI-1 UV spectra of: (a) diosgenin at 0.056 mg mL\(^{-1}\), (b) DI31 at 0.057 mg mL\(^{-1}\), S7 at 0.058 mg mL\(^{-1}\) in PBS (pH 6.0).

Figure SI-2 Calibration curve of diosgenin in PBS (pH 6.0).

\[y = 1.13x + 0.059 \]

\[R^2 = 0.9799 \]
Figure SI-3 Calibration curve of DI31 in PBS (pH 6.0).

\[y = 4.6x - 0.07 \]
\[R^2 = 0.9893 \]

Figure SI-4 Calibration curve of S7 in PBS (pH 6.0).

\[y = 2.9x - 0.011 \]
\[R^2 = 0.9867 \]
Figure SI-5 FT-IR spectra of diosgenin-glycine-Boc and diosgenin-glycine-NH$_2$ (1).

Figure SI-6 FT-IR spectra of DI31-glycine-Boc and DI31-glycine-NH$_2$ (2).

Figure SI-7 FT-IR spectra of S7-glycine-Boc and S7-glycine-NH$_2$ (3).
Figure SI-8 FT-IR spectra of polymer P1.

Figure SI-9 FT-IR spectra of polymer P2.

Figure SI-10 FT-IR spectra of polymer P3.
Figure SI-11 FT-IR spectra of polymer P4.

Figure SI-12 FT-IR spectra of polymer P5.

Figure SI-13 FT-IR spectra of polymer P6.
Figure SI-14 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of diosgenin-glycine-NH$_2$ (1).

Figure SI-15 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of DI31-glycine-NH$_2$ (2).
Figure SI-16 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of S7-glycine-NH$_2$ (3).

Figure SI-17 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of monomer trichlorophosphoranimine (Cl$_3$P=N−Si(CH$_3$)$_3$).
Figure SI-18 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polydichlorophosphazene.

Figure SI-19 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer P1.

Figure SI-20 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer P2.
Figure SI-21 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer **P3.**

Figure SI-22 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer **P4.**
Figure SI-23 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer P5.

Figure SI-24 Partial 1H NMR (300 MHz, 298 K, CDCl$_3$) spectra of polymer P6.
Figure SI-25 Partial APT 13C NMR (75 MHz, 298 K, CDCl$_3$) spectra of diosgenin-glycine-NH$_2$ (1).

Figure SI-26 Partial APT 13C NMR (75 MHz, 298 K, CDCl$_3$) spectra of DI31-glycine-NH$_2$ (2).
Figure SI-27 Partial APT 13C NMR (75 MHz, 298 K, CDCl$_3$) spectra of S7-glycine-NH$_2$ (3).

Figure SI-28 Partial APT 13C NMR (75 MHz, 298 K, CDCl$_3$) spectra of polymer P1.
Figure SI-29 Partial $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, 298 K, CDCl$_3$) spectra of monomer trichlorophosphoranimine (Cl$_3$P=N–Si(CH$_3$)$_3$).

Figure SI-30 Partial $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, 298 K, CDCl$_3$) spectra of polydichlorophospazene.
Figure SI-31 Partial $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P1.

Figure SI-32 Partial $^{31}\text{P}\{^1\text{H}\}$ NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P2.
Figure SI-33 Partial 31P{1H} NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P3.

Figure SI-34 Partial 31P{1H} NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P4.
Figure SI-35 Partial 31P{¹H} NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P5.

Figure SI-36 Partial 31P{¹H} NMR (121 MHz, 298 K, CDCl$_3$) spectra of polymer P6.

Figure SI-37 Dynamic light scattering, size distribution by intensity of polymer P4. Insert: AFM image of P4, scale bar = 400 nm.
Figure SI-38 Dynamic light scattering, size distribution by intensity of polymer P5. Insert: AFM image of P5, scale bar = 400 nm.

Figure SI-39 Dynamic light scattering, size distribution by intensity of polymer P6.

Figure SI-40 Dynamic light scattering, size distribution by volume of polymer P1.
Figure SI-41 Dynamic light scattering, size distribution by volume of polymer P2.

Figure SI-42 Dynamic light scattering, size distribution by volume of polymer P3.

Figure SI-43 Dynamic light scattering, size distribution by volume of polymer P4.
Figure SI-44 Dynamic light scattering, size distribution by volume of polymer P5.

Figure SI-45 Dynamic light scattering, size distribution by volume of polymer P6.

Figure SI-46 Plots of the fluorescence intensity ratio I_{335}/I_{332} from pyrene excitation spectra as a function of the P5 concentration in water at 25 °C.
Figure SI-47 Calorimetry differential scanning curve of polymer P1.

Figure SI-48 Calorimetry differential scanning curve of polymer P2.

Figure SI-49 Calorimetry differential scanning curve of polymer P3.
Figure SI-50 Calorimetry differential scanning curve of polymer P4.

Figure SI-51 Calorimetry differential scanning curve of polymer P5.

Figure SI-52 Calorimetry differential scanning curve of polymer P6.
Figure SI-53 *In vitro* agrochemical activity expressed in terms of increased weight of 10 radish cotyledons as a function of concentration of applied polymer P6, parent DI31 and S7, C refers to control (radish cotyledons treated with water). * Data not shown because radish cotyledons died as result of high ethanol content in DI31 and S7 solutions at 10^{-1} and 10^{-2} mg mL$^{-1}$.

Figure SI-54 Relative cell viability of MCF-7 breast cancer cells treated with polymers P1, P3.
Figure SI-55 Relative cell viability of primary HLF treated with polymers P1, P3.

Figure SI-56 Relative cell viability of MCF-7 breast cancer cells treated with parent steroids.
Figure SI-57 Relative cell viability of non-cancer HLF cells treated with parent steroids.

Figure SI-58 Primary HLF cells with 0.1 mg mL\(^{-1}\) SAF-P1 aggregates, 1 µg mL\(^{-1}\) of Hoechst 33342 and merged pictures (M), scale bars represents 20 µm.

Figure SI-59 Primary HLF cells with 0.1 mg mL\(^{-1}\) SAF-P2 aggregates, 1 µg mL\(^{-1}\) of Hoechst 33342 and merged pictures (M), scale bars represents 20 µm.
Figure SI-60 Primary HLF cells with 0.1 mg mL⁻¹ SAF-P3 aggregates, 1 µg mL⁻¹ of Hoechst 33342 and merged pictures (M), scale bars represent 20 µm.

Figure SI-61 Primary HLF cells with 0.1 mg mL⁻¹ SAF-P4 aggregates, 1 µg mL⁻¹ of Hoechst 33342 and merged pictures (M), scale bars represent 20 µm.

Figure SI-62 MCF-7 cancer cells with 0.1 mg mL⁻¹ SAF-P1 aggregates, 1 µg mL⁻¹ of Hoechst 33342 and merged pictures (M), scale bars represent 20 µm.
Figure SI-63 MCF-7 cancer cells with 0.1 mg mL\(^{-1}\) SAF-P2 aggregates, 1 µg mL\(^{-1}\) of Hoechst 33342 and merged pictures (M), scale bars represents 20 µm.

Figure SI-64 MCF-7 cancer cells with 0.1 mg mL\(^{-1}\) SAF-P3 aggregates, 1 µg mL\(^{-1}\) of Hoechst 33342 and merged pictures (M), scale bars represents 20 µm.

Figure SI-65 MCF-7 cancer cells with 0.1 mg mL\(^{-1}\) SAF-P4 aggregates, 1 µg mL\(^{-1}\) of Hoechst 33342 and merged pictures (M), scale bars represents 20 µm.