SUPPORTING INFORMATION

for

Perylene diimide–Cu\(^{2+}\) based fluorescent nanoparticles for detection of spermine in clinical, food samples: A step toward development of diagnostic kit as POCT tool for spermine

Kapil Kumar\(^a\), Sandeep Kaur\(^b\), Satwinderjit Kaur\(^b\), Gaurav Bhargava\(^c\), Subodh Kumar\(^a\)

Prabhpreet Singh\(^a\)*

\(^a\)Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar (Pb) 143 005, India. e-mail: prabhpreet.chem@gndu.ac.in; Tel: +91-84271-01534

\(^b\)Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar (Pb) 143 005, India

\(^c\)Department of Chemical Sciences, IK Gujral Punjab Technical University, Kapurthala-144601, Punjab, India.

1. Spectroscopic analysis of EA-PDI and DGA-PDI

| Figure S1a: \(^1\)H NMR spectrum of EA-PDI |
| Figure S1b: \(^1\)H NMR spectrum of EA-PDI after D\(_2\)O exchange |
| Figure S1c: \(^{13}\)C NMR spectrum of EA-PDI |
| Figure S1d: \(^1\)H-\(^1\)H COSY spectrum of EA-PDI |
| Figure S1e: HSQC spectrum of EA-PDI |

2. Cyclic voltammetric studies of EA-PDI

| Figure S3: Cyclic voltammogram of EA-PDI recorded in dichloromethane (vs. Ag/AgCl). |

3. Density Functional Theory (DFT) studies of EA-PDI

| Figure S4: Molecular orbital analysis of EA-PDI with HOMO and LUMO presentation and energy optimized structure of EA-PDI showing twisting of naphthalene core. |

4. Spectroscopic response of EA-PDI towards Cu\(^{2+}\) ions

| Figure S5: (a) Absorbance changes and (b) bar graph of EA-PDI (10 µM) on the addition of various metal ions (100 µM) recorded in HEPES–CH\(_3\)CN (1:1, pH 7.2) solution. |
| Figure S6: (a) Fluorescence changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various metal ions (100 µM) recorded in HEPES–CH\(_3\)CN (1:1, pH 7.2) solution. |
| Figure S7: (a) Absorbance profile of EA-PDI (10 µM) recorded in HEPES buffer–CH\(_3\)CN (1:1, v/v, pH 7.2) on incremental addition of Cu\(^{2+}\) ions; (b) Job’s plot of EA-PDI with increasing mole fraction of Cu\(^{2+}\) showing formation of 1:1 complex using UV-Vis Spectroscopy. |
| Figure S8: (a) Fluorescence profile of EA-PDI (0.05 µM) recorded in HEPES buffer–CH\(_3\)CN (1:1, v/v, pH 7.2) on incremental addition of Cu\(^{2+}\) ions; (b) Benesi-Hildebrand plot of EA-PDI in the presence of increasing concentrations of Cu\(^{2+}\) ions. |
| Figure S9: Plot of fluorescence intensity (FI) of EA-PDI (0.05 µM, 1:1 H\(_2\)O/CH\(_3\)CN vs Cu\(^{2+}\) ions. |
| Figure S10: (a) Absorbance changes and (b) bar graph of EA-PDI (10 µM) on the addition of various metal ions (100 µM) and subsequently Cu\(^{2+}\) ions (20 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH\(_3\)CN (1:1, pH 7.2) solution. |
| Figure S11: (a) Emission changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various metal ions (0.5 µM) and subsequently Cu\(^{2+}\) ions (0.1 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH\(_3\)CN (1:1, pH 7.2) solution. \(\lambda_{ex} = 490\) nm, slit: 10 nm/7 nm. |

Table S1: Photophysical parameters calculated for EA-PDI, EA-PDI∩Cu\(^{2+}\) complex and EA-PDI∩Cu\(^{2+}\) complex+spermine

| Figure S12: Fluorescence life time changes in (a) EA-PDI (10 µM) (b) EA-PDI (0.05 µM) on the addition of Cu\(^{2+}\) ions and subsequently spermine was added. All spectra were recorded in HEPES–CH\(_3\)CN (1:1, pH 7.2) solution. |

5. Spectroscopic response of DGA-PDI towards Cu\(^{2+}\) ions

<p>| Figure 13: (a) Absorbance (10 µM) and (b) fluorescence spectra (0.05 µM) of DGA-PDI recorded on incremental addition of Cu(^{2+}) ions; [Inset] ratiometric plot between (A_{523nm}/A_{620nm}) versus concentrations of spermine. |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Detection of Cu$^{2+}$ using TLC strip</td>
<td>Figure S14. (a) Absorbance profiles of DGA-PDI (10 µM) recorded in HEPES buffer–CH$_3$CN (1:1, v/v, pH 7.2) on incremental addition of Cu$^{2+}$ ions; (b) Benesi-Hildebrand plot of DGA-PDI in the presence of increasing concentrations of Cu$^{2+}$ ions.</td>
</tr>
<tr>
<td>7.</td>
<td>Detection of Cu$^{2+}$ in biofluids (Blood Serum and Urine)</td>
<td>Figure S15. Colorimetric and fluorescent photographs of TLC strips coated with EA-PDI solution on addition of Cu$^{2+}$ ions; (I) (a) TLC strip coated with EA-PDI (2x10$^{-5}$ M); TLC strips on addition of 5 µL of different concentration of Cu$^{2+}$ ions (b) 5x10$^{-6}$ M (c) 1x10$^{-5}$ M (d) 2x10$^{-5}$ M (e) 3x10$^{-5}$ M and (f) 4x10$^{-5}$ M; (II) (a) TLC strip coated with EA-PDI (1x10$^{-5}$ M); TLC strips on addition of 5 µL of different concentration of Cu$^{2+}$ ions (b) 3x10$^{-6}$ M (c) 1x10$^{-5}$ M (d) 5x10$^{-5}$ M (e) 1x10$^{-4}$ M and (f) 2x10$^{-5}$ M [The size of each TLC strip is 1 cm2].</td>
</tr>
<tr>
<td>8.</td>
<td>Effect of pH on EA-PDI and DGA-PDI∩Cu$^{2+}$ towards spermine</td>
<td>Figure S16. (a,c) Absorption and (b,d) fluorescence spectra of EA-PDI after the incremental addition of Cu$^{2+}$ ions recorded in HEPES buffer–CH$_3$CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum]; inset in (a-d): table showing recovery of Cu$^{2+}$ ions in spiked urine and blood serum samples.</td>
</tr>
<tr>
<td>9.</td>
<td>Spectroscopic response of EA-PDI or DGA-PDI∩Cu$^{2+}$ towards spermine</td>
<td>Figure S17. (a,c) Absorption and (b,d) fluorescence profile of EA-PDI after the incremental addition of Cu$^{2+}$ ions recorded in HEPES buffer–CH$_3$CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum] along with recovery of spiked samples shown as colored points in each graph.</td>
</tr>
<tr>
<td>10.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Figure S18. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI (10 µM) recorded in CH$_3$CN:H2O (1:1, v/v) at λ{ex} = 490 nm, slit: 15 nm/2.5 nm.</td>
</tr>
<tr>
<td>11.</td>
<td>Colorimetric diagnostic kit using EA-PDI∩Cu$^{2+}$</td>
<td>Figure S19. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI–Cu$^{2+}$ (10 µM) recorded in CH$_3$CN:H2O (1:1, v/v) at λ{ex} = 490 nm, slit: 15 nm/2.5 nm.</td>
</tr>
<tr>
<td>12.</td>
<td>Colorimetric diagnostic kit using EA-PDI∩Cu$^{2+}$</td>
<td>Figure S20. (a) Job’s plot (absorbance) of EA-PDI–Cu$^{2+}$ complex with spermine showing 1:1 stoichiometry; (b) Stern-Volmer (S-V) plot between I/I$_0$ versus [spermine]; (c) Job’s plot (fluorescence) of EA-PDI–Cu$^{2+}$ complex with spermine showing 1:1 stoichiometry recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.</td>
</tr>
<tr>
<td>13.</td>
<td>Spectroscopic response of EA-PDI or DGA-PDI∩Cu$^{2+}$ towards spermine</td>
<td>Figure S21. (a,b) Absorbance changes and (c,d) bar graph of EA-PDI (10 µM) on the addition of various amines and anions (100 µM) respectively and subsequently Cu$^{2+}$ ions (20 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminooctane (E), 1,3-diaminopropane (F), phenylalanine (G), diethanolamine (H), N,N’-dimethyl ethylenediamine (I), spermidine (J). All these spectra were measured after 1-hour time gap.</td>
</tr>
<tr>
<td>14.</td>
<td>Spectroscopic response of EA-PDI or DGA-PDI∩Cu$^{2+}$ towards spermine</td>
<td>Figure S22. (a,b) Emission changes and (c,d) bar graph of EA-PDI (0.05 µM) on the addition of various amines and anions (0.5 µM) respectively and subsequently Cu$^{2+}$ ions (0.1 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH3CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminooctane (E), 1,3-diaminopropane (F), phenylalanine (G), diethanolamine (H), N,N’-dimethyl ethylenediamine (I), spermidine (J). λ{ex} = 490 nm, slit: 10 nm/7 nm. All these spectra were measured after 1-hour time gap.</td>
</tr>
<tr>
<td>15.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Figure S23. (a) Absorbance spectra of DGA-PDI∩Cu$^{2+}$ complex showing detection of spermene in HEPES buffer–CH3CN 7.3, v/v, pH 7.2 solution; (b) Plot of $A{510nm}$ and A_{522nm} versus concentrations of spermene. All spectra were recorded after time interval of 1 hour.</td>
</tr>
<tr>
<td>16.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Figure S24. (a) Fluorescence spectra of DGA-PDI∩Cu$^{2+}$ complex showing detection of spermene in HEPES buffer–CH3CN 7.3, v/v, pH 7.2 solution; (b) Plot between $A{520nm}/A_{523nm}$ versus concentrations of spermene; λ_{ex} = 490 nm, slit: 10 nm/10 nm. All spectra were recorded after time interval of 1 hour.</td>
</tr>
<tr>
<td>17.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Figure S25. (a,b) Absorption and (c,d) fluorescence spectra of ENS after the incremental addition of spermene recorded in HEPES buffer–CH$_3$CN [1:1, v/v, pH 7.2, containing (a,c) 10% urine solution and (b,d) containing 10% blood serum]; [Inset of a-c) graph showing the recovery of spermene.</td>
</tr>
<tr>
<td>18.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Table S2: Recovery of spermene using EA-PDI∩Cu$^{2+}$ in spiked urine and blood serum samples recorded in HEPES buffer–CH$_3$CN [1:1, v/v, pH 7.2].</td>
</tr>
<tr>
<td>19.</td>
<td>Detection of spermene in biofluids using EA-PDI∩Cu$^{2+}$ (Blood Serum and Urine)</td>
<td>Figure S26. Fluorescence (λ_{ex} = 365 nm) images of well plate containing ENS (10 µM) alone (1) and ENS + different concentrations of spermene viz: 1 µM (2); 2 µM (3); 3 µM (4); 5 µM (5); 7 µM (6); 10 µM (7); 15 µM (8); 20 µM (9); 30 µM (10); 40 µM (11) and 60 µM (12).</td>
</tr>
<tr>
<td>12.</td>
<td>Detection of spermine using TLC strip coated with EA-PDI∩Cu$^{2+}$</td>
<td>S24-25</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Figure S27. Detection of spermine by using EA-PDI+Cu$^{2+}$ complex coated paper strips.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure S28. Colorimetric (50 µM) photographs of TLC strips coated with complex solution on addition of spermine; (II) (a) TLC strip coated with complex; TLC strips on addition of 5 µL of different concentration of spermine (b) 1x10$^{-6}$ M (c) 5x10$^{-6}$ M (d) 1x10$^{-5}$ M and (e) 2x10$^{-5}$ M [The size of each TLC strip is 1 cm2].</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13.</th>
<th>Detection of spermine vapors in well plate using EA-PDI∩Cu$^{2+}$</th>
<th>S25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S29. UV-Vis images of well plates kept at refrigeration conditions containing fish (F1-F3) and mushroom (M1-M3) samples in three wells of first row and rest of the wells in upper and lower images are filled with 10, 20 and 30 µM concentration of EA-PDI+Cu$^{2+}$ complex (1:2) solution, respectively.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S30. Absorbance spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] ratiometric plot between A${620nm}$/A${523nm}$ as function of time; Color images of well plate containing complex (1) and complex +test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15.</th>
<th>MTT assay and live cell imaging of Cu$^{2+}$ using EA-PDI</th>
<th>S27-28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S31. Fluorescence spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] plot of FI (I/I$_{o}$) as function of time; Color images of well plate containing complex (1) and complex +test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.</th>
<th>Experimental Section</th>
<th>S29-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table S3: Comparison of the present manuscript with literature reports</td>
<td>S32</td>
<td></td>
</tr>
</tbody>
</table>

1. Spectroscopic analysis of EA-PDI and DGA-PDI
Figure S1a: 1H NMR spectrum of EA-PDI.

Figure S1b: 1H NMR spectrum of EA-PDI after D$_2$O exchange.
Figure S1c: 13C NMR spectrum of EA-PDI.

Figure S1d: 1H-1H COSY spectrum of EA-PDI.
Figure S1e: HSQC spectrum of EA-PDI.

Figure S2a: 1H NMR spectrum of DGA-PDI.
Figure S2b: 13C NMR spectrum of DGA-PDI.

2. Cyclic Voltammetric studies of EA-PDI

Figure S3: Cyclic voltammogram of EA-PDI recorded in dichloromethane (vs. Ag/AgCl).
3. Density Functional Theory (DFT) studies of EA-PDI

![Molecular orbital analysis and energy optimized structure of EA-PDI](image)

Figure S4: Molecular orbital analysis of EA-PDI with HOMO and LUMO presentation and energy optimized structure of EA-PDI showing twisting of naphthalene core.

4. Spectroscopic response of EA-PDI towards Cu$^{2+}$ ions

![Absorbance and bar graph](image)

Figure S5. (a) Absorbance changes and (b) bar graph of EA-PDI (10 µM) on the addition of various metal ions (100 µM) recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.

![Fluorescence changes and bar graph](image)

Figure S6. (a) Fluorescence changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various metal ions (100 µM) recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.
Figure S7. (a) Absorbance profile of EA-PDI (10 µM) recorded in HEPES buffer–CH$_3$CN (1:1, v/v, pH 7.2) on incremental addition of Cu$^{2+}$ ions; (b) Job’s plot of EA-PDI with increasing mole fraction of Cu$^{2+}$ showing formation of 1:1 complex using UV-Vis Spectroscopy.

Figure S8. (a) Fluorescence profile of EA-PDI (0.05 µM) recorded in HEPES buffer–CH$_3$CN (1:1, v/v, pH 7.2) on incremental addition of Cu$^{2+}$ ions; (b) Benesi-Hildebrand plot of EA-PDI in the presence of increasing concentrations of Cu$^{2+}$ ions.

Figure S9. Plot of fluorescence intensity (FI) of EA-PDI (0.05 µM, 1:1 H$_2$O/CH$_3$CN vs Cu$^{2+}$ ions.
Figure S10. (a) Absorbance changes and (b) bar graph of EA-PDI (10 µM) on the addition of various metal ions (100 µM) and subsequently Cu^{2+} ions (20 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.
Figure S11. (a) Emission changes and (b) bar graph of EA-PDI (0.05 µM) on the addition of various metal ions (0.5 µM) and subsequently Cu^{2+} ions (0.1 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution. $\lambda_{ex} = 490$ nm, slit: 10 nm/7 nm.
Table S1: Photophysical parameters calculated for EA-PDI, EA-PDI∩Cu$^{2+}$ complex and EA-PDI∩Cu$^{2+}$ complex+spermine

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Photophysical parameter</th>
<th>EA-PDI</th>
<th>EA-PDI∩Cu$^{2+}$ complex</th>
<th>EA-PDI∩Cu$^{2+}$ complex+spermine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Quantum Yield</td>
<td>11.5%</td>
<td>30.1%</td>
<td>11.2%</td>
</tr>
<tr>
<td>2.</td>
<td>Fluorescence life time</td>
<td>0.35 ns</td>
<td>0.7 ns</td>
<td>0.34 ns</td>
</tr>
<tr>
<td>3.</td>
<td>Radiative decay constant (K_r)</td>
<td>0.32x109/sec</td>
<td>0.43x109/sec</td>
<td>0.32x109/sec</td>
</tr>
<tr>
<td>4.</td>
<td>Non-radiative decay constant (K_{nr})</td>
<td>2.52x109/sec</td>
<td>0.184x109/sec</td>
<td>2.61x109/sec</td>
</tr>
</tbody>
</table>

Figure S12. Fluorescence life time changes in (a) EA-PDI (10 µM) (b) EA-PDI (0.05 µM) on the addition of Cu$^{2+}$ ions and subsequently spermine was added. All spectra were recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.
5. **Spectroscopic response of DGA-PDI towards Cu^{2+} ions**

![Spectroscopic response](image)

Figure 13. (a) Absorbance (10 µM) and (b) fluorescence spectra (0.05 µM) of DGA-PDI recorded on incremental addition of Cu^{2+} ions; [Inset] ratiometric plot between A_{523nm}/A_{620nm} versus concentrations of Cu^{2+}; [Inset] I-I$_{o}$ versus concentrations of Cu^{2+} for calculating the lowest detection limit.

Figure S14. (a) Absorbance profiles of DGA-PDI (10 µM) recorded in HEPES buffer–CH$_3$CN (1:1, v/v, pH 7.2) on incremental addition of Cu^{2+} ions; (b) Benesi-Hildebrand plot of DGA-PDI in the presence of increasing concentrations of Cu^{2+} ions.
6. Detection of Cu$^{2+}$ using TLC strip

Figure S15. Colorimetric and fluorescent photographs of TLC strips coated with EA-PDI solution on addition of Cu$^{2+}$ ions; (I) (a) TLC strip coated with EA-PDI (2x10^{-5} M); TLC strips on addition of 5 µL of different concentration of Cu$^{2+}$ ions (b) 5x10^{-6} M (c) 1x10^{-5} M (d) 2x10^{-5} M (e) 3x10^{-5} M and (f) 4x10^{-5} M; (II) (a) TLC strip coated with EA-PDI (1x10^{-5} M); TLC strips on addition of 5 µL of different concentration of Cu$^{2+}$ ions (b) 5x10^{-7} M (c) 1x10^{-6} M (d) 5x10^{-6} M (e) 1x10^{-5} M and (f) 2x10^{-5} M [The size of each TLC strip is 1 cm2].
7. Detection of Cu$^{2+}$ in biofluids (Blood Serum and Urine)

Figure S16. (a,c) Absorption and (b,d) fluorescence spectra of EA-PDI after the incremental addition of Cu$^{2+}$ ions recorded in HEPES buffer-CH$_3$CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum]; inset in (a-d): table showing recovery of Cu$^{2+}$ ions in spiked urine and blood serum samples.
Figure S17. (a,c) Absorption and (b,d) fluorescence profile of EA-PDI after the incremental addition of Cu^{2+} ions recorded in HEPES buffer-CH\textsubscript{3}CN [1:1, v/v, pH 7.2, containing (a,b) 10% urine solution and (c,d) containing 10% blood serum] along with recovery of spiked samples shown as colored points in each graph.
8. Effect of pH on EA-PDI and EA-PDI∩Cu$^{2+}$

Figure S18. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI (10 µM) recorded in CH$_3$CN:H$_2$O (1:1, v/v); λ_{ex} = 490 nm, slit: 15 nm/2.5 nm.

Figure S19. The effect of pH on the (a) absorbance and (b) fluorescence spectrum of EA-PDI–Cu$^{2+}$ (10 µM) recorded in CH$_3$CN:H$_2$O (1:1, v/v); λ_{ex} = 490 nm, slit: 15 nm/2.5 nm.
9. Spectroscopic response of EA-PDI∩Cu$^{2+}$ towards spermine

Figure S20. (a) Job’s plot (absorbance) of EA-PDI–Cu$^{2+}$ complex with spermine showing 1:1 stoichiometry; (b) Stern-Volmer (S-V) plot between I/I_0 versus [spermine]; (c) Job’s plot (fluorescence) of EA-PDI–Cu$^{2+}$ complex with spermine showing 1:1 stoichiometry recorded in HEPES–CH$_3$CN (1:1, pH 7.2) solution.
Figure S21. (a,b) Absorbance changes and (c,d) bar graph of EA-PDI (10 µM) on the addition of various amines and anions (100 µM) respectively and subsequently Cu²⁺ ions (20 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminooctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine (H), N,N’-dimethyl ethylenediamine (I), spermidine (J). All these spectra were measured after 1-hour time gap.
Figure S22. (a,b) Emission changes and (c,d) bar graph of EA-PDI (0.05 µM) on the addition of various amines and anions (0.5 µM) respectively and subsequently Cu²⁺ ions (0.1 µM) was added to check the interference and selectivity. All spectra were recorded in HEPES–CH₃CN (1:1, pH 7.2) solution. For Panel (a-d) Sp = Spermine; L = EA-PDI; EDTA (A), putrescine (B), tris(2-aminoethyl)amine (C), diethylenetriamine (D), 1,8-diaminooctane (E), 1,3-diaminopropane (F), phenylalanine (G); diethanolamine (H), N,N’-dimethyl ethylenediamine (I), spermidine (J). λₑₓ = 490 nm, slit: 10 nm/7 nm. All these spectra were measured after 1-hour time gap.
Figure S23. (a) Absorbance spectra of DGA-PDI∩Cu²⁺ complex showing detection of spermine in HEPES buffer-CH₃CN 7:3, v/v, pH 7.2 solution; (b) Plot of $A_{616\text{nm}}$ and $A_{522\text{nm}}$ versus concentrations of spermine. All spectra were recorded after time interval of 1 hour.

Figure S24. (a) Fluorescence spectra of DGA-PDI∩Cu²⁺ complex showing detection of spermine in HEPES buffer-CH₃CN 7:3, v/v, pH 7.2 solution; (b) Plot between $A_{620\text{nm}}/A_{523\text{nm}}$ versus concentrations of spermine; $\lambda_{\text{ex}} = 490$ nm, slit: 10 nm/10 nm. All spectra were recorded after time interval of 1 hour.
10. Detection of spermine in biofluids using EA-PDI∩Cu^{2+} (Blood Serum and Urine)

Figure S25. (a,b) Absorption and (c,d) fluorescence spectra e of ENS after the incremental addition of spermine recorded in HEPES buffer-CH$_3$CN [1:1, v/v, pH 7.2, containing (a,c) 10% urine solution and (b,d) containing 10% blood serum]; (Inset of a-c) graph showing the recovery of spermine
Table S2: Recovery of spermine using **EA-PDI∩Cu**\(^{2+}\) in spiked urine and blood serum samples recorded in HEPES buffer-CH\(_3\)CN [1:1, v/v, pH 7.2.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Samples</th>
<th>Spermine added (µM)</th>
<th>Spermine found (µM)</th>
<th>% age recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-Vis</td>
<td>Blood Serum</td>
<td>5.0</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0</td>
<td>15.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.3</td>
<td>25.0</td>
<td>98.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.9</td>
<td>30.0</td>
<td>97.08</td>
</tr>
<tr>
<td></td>
<td>Urine</td>
<td>2.0</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.5</td>
<td>12.0</td>
<td>104.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.8</td>
<td>15.0</td>
<td>101.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.0</td>
<td>40.0</td>
<td>100</td>
</tr>
<tr>
<td>Fluorescence</td>
<td>Blood Serum</td>
<td>0.0103</td>
<td>0.01</td>
<td>96.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1545</td>
<td>0.15</td>
<td>97.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Urine</td>
<td>0.0255</td>
<td>0.025</td>
<td>98.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.105</td>
<td>0.1</td>
<td>95.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>100</td>
</tr>
</tbody>
</table>
11. Colorimetric diagnostic kit using EA-PDI∩Cu²⁺

![Image](image1)

Figure S26. Fluorescence ($\lambda_{ex} = 365$ nm) images of well plate containing ENS (10 μM) alone (1) and ENS + different concentrations of spermine *viz.* 1 μM (2); 2 μM (3); 3 μM (4); 5 μM (5); 7 μM (6); 10 μM (7); 15 μM (8); 20 μM (9); 30 μM (10); 40 μM (11) and 60 μM (12).

12. Detection of spermine using TLC strip coated with EA-PDI∩Cu²⁺

![Image](image2)

Figure S27. Detection of spermine by using EA-PDI+Cu²⁺ complex coated paper strips.
Figure S28. Colorimetric (50 µM) photographs of TLC strips coated with complex solution on addition of spermine; (II) (a) TLC strip coated with complex; TLC strips on addition of 5 µL of different concentration of spermine (b) 1x10⁻⁶ M (c) 5x10⁻⁶ M (d) 1x10⁻⁵ M and (e) 2x10⁻⁵ M [The size of each TLC strip is 1 cm²].

13. Detection of spermine vapors in well plate using EA-PDI∩Cu²⁺

Figure S29. UV-Vis images of well plates kept at refrigeration conditions containing fish (F1-F3) and mushroom (M1-M3) samples in three wells of first row and rest of the wells in upper and lower images are filled with 10, 20 and 50 µM concentration of EA-PDI+Cu²⁺ complex (1:2) solution, respectively.
14. Detection of spermine in solution form using EA-PDI∩Cu²⁺

Figure S30. Absorbance spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] ratiometric plot between A_{620nm}/A_{523nm} as function of time; Color images of well plate containing complex (1) and complex + test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).
Figure S31. Fluorescence spectra of complex showing detection of spermine in test samples collected from (a) fish and (b) mushroom; [Inset of (a) and (b)] plot of FI (I/I_o) as function of time; Color images of well plate containing complex (1) and complex + test samples collected at different time interval (in hour) from (c) fish and (d) mushroom viz., 0 (2); 12 (3); 24 (4); 36 (5); 48 (6); 60 (7); 72 (8); 84 (9); 96 (10); 108 (11) and 120 (12).

15. MTT assay and live cell imaging of Cu$^{2+}$ using EA-PDI

Figure S32. Cell viability values (%) tested by an MTT assay using MG-63 cells.
Figure S33: Brightfield image of MG-63 cells incubated with (a) EA-PDI; (d,g) EA-PDI–Cu²⁺; fluorescence images of MG-63 cells incubated with (b) EA-PDI (1 μM) and (c) EA-PDI (5 μM) for 30 min; fluorescence image of MG-63 cells incubated with EA-PDI (1 μM) for 30 min and then incubated with (e) Cu²⁺ (4 μM) and (h) Cu²⁺ (8 μM) for another 30 min; fluorescence image of MG-63 cells incubated with EA-PDI (5 μM) for 30 min and then incubated with (f) Cu²⁺ (20 μM) and (i) Cu²⁺ (40 μM) for another 30 min.
16. Experimental Section

General methods: Chemicals and solvents were of reagent grade and used without further purification. All reactions were performed under N$_2$. CH$_3$CN, CHCl$_3$ and other solvents were of HPLC grade. Deionized water was obtained from ULTRA UV/UF Rions Lab Water System Ultra 370 series devices. Chromatographic purification was done with silica gel 60-120 mesh. TLC was performed on aluminium sheets coated with silica gel 60 F254 (Merck, Darmstadt). PDI 1 was synthesized according to literature procedures.

Instrumentation: 1H and 13C NMR spectra were recorded on a Bruker-AVANCE-II FT-NMR AL400 spectrometer using CDCl$_3$ as solvent. The peak values were obtained as ppm (δ), and referenced to tetramethylsilane (TMS) for 1H NMR spectroscopy and the residual solvent signal for 13C NMR spectroscopy. Data are reported as follows: chemical shifts in ppm, coupling constant J in Hz; multiplicity (s = singlet, bs = broad singlet, t = triplet, q = quartet, m = multiplet). The absorption spectra were recorded on a SHIMADZU-2450 spectrophotometer equipped with a Peltier system to control the temperature. Quartz cells of 1 cm in length were used for sample measurements. The spectral bandwidth and scan rate were fixed at 2 nm and 140 nm min$^{-1}$ respectively. Fluorescence titrations were performed on a PerkinElmer LS-55 fluorescence spectrophotometers (slit width: excitation = 10 nm, emission = 7 nm) with excitation at 490 nm, unless otherwise stated. Quartz cells of 1 cm in length were used for sample measurements. FE-SEM measurements were performed on a ZEISS SUPRA™55 microscope operating at an acceleration voltage of 10 kV with a tungsten filament as the electron source. DLS measurements were performed at (25.0±0.1) °C by using a light-scattering apparatus (Zetasizer Nano ZS Malvern Instrument Ltd., UK). Solutions were filtered through a Millipore membrane filter (Acrodisc syringe filter, 0.45 µm Supor membrane) before measurements. The samples were thermally equilibrated for 10 min before each measurement, and an average of 10 measurement runs were considered to be data. The temperature was controlled to an accuracy of ±0.1 °C by using an in-built Peltier device. Data was analyzed by using standard algorithms.

Preparation of EA-PDI∩Cu$^{2+}$ complex solution: 10 µM solution of EA-PDI for UV-Vis studies and 0.05 µM solution of EA-PDI for fluorescence studies were prepared in HEPES buffer–CH$_3$CN (1:1), v/v, pH 7.2 solution. These solution were treated with 2 equivalents of Cu(ClO$_4$)$_2$ and mixtures were allowed to stand for 1h at room temperature for equilibrium and then various UV-Vis, fluorescence, microscopic and light scattering measurements were taken.
Cell culture. Human Osteosarcoma MG-63 cell line was purchased from National Centre for Cell Science, Pune (India). Cells was grown routinely in DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented with 10% (v/v) Fetal Bovine Serum (Biological Industries) and 1% antibiotic-antimycotic solution. The cells were cultured and maintained in CO₂ incubator in a 95% humidified atmosphere, 5% CO₂ and at 37°C in a tissue culture flask. Two wells served as control; cells of two wells were treated each with **EA-PDI** (1 and 5 µM prepared in CH₃CN:media, 5:95); Cu²⁺ ions (40 and 400 µM prepared in CH₃CN: media, 5:95) treatment was given to cells of two wells; 4 wells were treated with **EA-PDI** (2 wells each with 1 and 5 µM), cells of 8 wells were treated with **EA-PDI** (4 wells each with 1 and 5 µM) for 30 minutes followed by Cu²⁺ ions (2 wells each with 4 and 8 µM; 20 and 40 µM); cells of another 8 wells were treated with **EA-PDI** (2 wells each with 1 and 5 µM) for 30 minutes followed by Cu²⁺ ions (2 wells each with 4 and 8 µM; 20 and 40 µM) followed by treatment with spermine (16 and 32 µM; 80 and 160 µM). The cells were trypsinized and seeded in 24-well plates (1 × 10⁵ cells/well) by placing 12 mm coverslip in each well. MG-63 cells were washed twice with 1xPBS and fixed with 4% paraformaldehyde for 10 minutes. After fixation, the cells were washed thrice with 1xPBS. The coverslips containing cells were mounted on the glass slides with anti-fading reagent (Fluoromount; Sigma). Finally, the images were captured by using Nikon A1R Laser Scanning Confocal Microscope system with an excitation of 490 nm. Imaging was performed with a 60x oil-emersion objective lens.

MTT Assay: The test sample was used to measure its cytotoxicity in Human Osteosarcoma MG-63 cell line using MTT assay with slight modifications. The cells were seeded at the concentration of 1x10⁴ cells/0.1 ml in a 96 well microplates and incubated for 24 hours to allow the adherence of cells. After attachment, the cells were treated with different concentrations of **EA-PDI**. After completion of another 24 hours, 20 µl of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added in each well to determine the ability of viable cells to reduce it into purple colored formazan (insoluble) and the cells were incubated for 3-4 hours. Then the supernatant containing MTT solution was removed from each well and finally dissolved the intracellular formazan in 100 µl of dimethyl sulfoxide. The decrease in absorbance was read using a multiwell plate reader (BioTek Synergy HT) at 570 nm.

Sample preparation for TLC Strips. TLC strips were made by dipping 1 cm x 1 cm aluminium sheets coated with silica gel 60 F254 into 20% water–CH₃CN solution of **EA-PDI** (10 µM for fluorescence; 50 µM for colorimetric methods) solution followed by drying at room temperature.
Different concentrations of Cu$^{2+}$ or spermine were prepared in aqueous solution. One drop containing 5 μL aliquot of each solution of different concentrations of Cu$^{2+}$ was added on the TLC strips previously coated with EA-PDI and dried before visualization under UV lamp. After that one drop containing 5 μL aliquot of each solution of different concentrations of spermine was added on the same area of TLC strip where drop of Cu$^{2+}$ was deposited. After drying, the area where spermine was added again visualized under UV lamp to produce all the images. For control experiment, drop of water alone was also added on the same area of TLC strip where drop of Cu$^{2+}$ was deposited. The TLC strips were then visualized under sunlight or UV irradiation (365 nm lamp).

Preparation of urine and blood serum samples. For estimation of Cu$^{2+}$ and spermine in the clinical samples, blood serum and urine from healthy humans were collected from health center of the university with the consent of donors. The permission for experiments with blood serum and urine samples was accorded by the Institutional Ethical Committee, Guru Nanak Dev University (letter No. 661/HG dated 29-3-2016). We prepared solution of EA-PDI and EA-PDI∩Cu$^{2+}$ complex (1:2) in HEPES buffer–CH$_3$CN (1:1) containing 10% urine or blood serum and independently spiked with known concentrations of Cu$^{2+}$ and spermine, respectively in the range of 0–40 μM concentrations. The absorbance and fluorescence spectra of these Cu$^{2+}$ and spermine spiked solutions were recorded and compared with standard calibration curves.

Detection of biogenic amine (spermine) in food samples. A fresh mushroom and fish samples were procured from a local market and washed with distilled water. Immediately a series of three samples in duplicates for fish and mushroom (2 g/well) were separately kept in 24-well plates and the remaining wells were filled with 1 mL of EA-PDI∩Cu$^{2+}$ complex solution of different concentrations such as 10, 20 and 50 μM. The cover was placed on the well plates and were kept in different storing conditions, i.e., room temperature and frozen temperature (0 °C). The photographs were taken after duration of 3 and 6 days. In another experiment, fish and mushroom samples were separately sealed in a 50 mL glass container and 30 mL of water was added and samples were sealed with aluminium foil and kept at room temperature. The solutions (1.0 mL) using microsyringe were collected at regular time intervals over a period of 120 h from each sample and injected into HEPES buffer–CH$_3$CN (1:1, v/v pH 7.2) solution of EA-PDI∩Cu$^{2+}$ complex (1:2). After equilibrium was reached, absorbance (A_{620nm}/A$_{523nm}$) and fluorescence (I/I_o) responses of EA-PDI∩Cu$^{2+}$ complex was recorded as a function of time.
Table S3: Comparison of the present manuscript with literature reports

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Citation</th>
<th>Type of system</th>
<th>Solvent system</th>
<th>Detection limits</th>
<th>Live cell imaging</th>
<th>Detection in clinical samples</th>
<th>Detection in Food products (aqueous systems)</th>
<th>Detection in food products (vapour phase)</th>
<th>Solid state detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sensor Actuator B Chem: 2018, 270, 552-561</td>
<td>Perylenedii mide and Cu²⁺ complex based nanoparticles</td>
<td>HEPES: CH₃CN (1:1)</td>
<td>6 nM</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2.</td>
<td>ACS Sustainable Chem. Eng.2017, 5, 1287−1296</td>
<td>Cu²⁺ complex of organic nanoparticles</td>
<td>DMF(1): H₂O(99)</td>
<td>36.2 (UV-Vis)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Food articles (Mushroom and meat)</td>
<td>No</td>
</tr>
<tr>
<td>3.</td>
<td>Anal. Chem.2014, 86, 1347−1351</td>
<td>Gold nanoparticles</td>
<td>-</td>
<td>10 ppb</td>
<td>No</td>
<td>Human urine samples</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4.</td>
<td>Biosensors and Bioelectronics, 2017, 88, 71-77</td>
<td>Tyrosine-Au NPs</td>
<td>Aqueous system</td>
<td>136 pM (UV-Vis) and 6.2 nM(FI)</td>
<td>No</td>
<td>Human plasma and urine samples</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5.</td>
<td>Eur. J. Inorg. Chem.2015, 4437–4442</td>
<td>Dipicolinic acid hydrazide Schiff base</td>
<td>Aqueous system</td>
<td>7.26 nM (UV)</td>
<td>No</td>
<td>Real samples analysis</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6.</td>
<td>Anal. Chem.2016, 88, 7358–7364</td>
<td>Polymer-surfactant complexation</td>
<td>Aqueous system</td>
<td>0.33 µM/66 ppb</td>
<td>No</td>
<td>Human urine samples</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>8.</td>
<td>Chem. Commun.,2016,52, 1040-1043</td>
<td>Micelles of pyrene and squaraine</td>
<td>Buffered solutions</td>
<td>4.73 µM</td>
<td>No</td>
<td>Human Urine samples</td>
<td>No</td>
<td>No</td>
<td>Test strips method</td>
</tr>
<tr>
<td>9.</td>
<td>Chem. Commun.,2016,52,10 648-10651</td>
<td></td>
<td>Buffered solutions</td>
<td>0.6 µM (FI)</td>
<td>No</td>
<td>Artificial urine samples</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10.</td>
<td>Chem. Asian J. 2017, 12, 890-899</td>
<td>Perylene-SDS self- assemblies for spermine</td>
<td>HEPES:CH₃CN(1:1)</td>
<td>27.5nM (Fl)</td>
<td>No</td>
<td>Human and blood serum samples</td>
<td>No</td>
<td>No</td>
<td>Test strips method</td>
</tr>
</tbody>
</table>