Real-time Monitoring Etoposide Prodrug Activated by Hydrogen Peroxide with Improved Safety

Jiawen Zhu, Jingting Chen, Dongmei Song, Wenda Zhang, Jianpeng Guo, Guiping Cai, Yuhao Ren, Chengying Wan, Lingyi Kong* and Wenying Yu*

*Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China.

Corresponding author: cpu_lykong@126.com (L. Kong), ywy@cpu.edu.cn (W. Yu)

Supporting Information

Contents

1. Synthetic procedure of 6YT (Scheme S1).................................S2
2. The spectra of 1H NMR, 13C NMR (Figure S1-S7)..................S3
3. HR-ESI-MS spectrum of 6YT (Figure S8)..................................S6
4. pH dependence of 6YT in the absence and presence of H$_2$O$_2$ (Figure S9)..S7
5. Monitoring of Etoposide release by RP-HPLC (Figure S10)..............S7
6. Fluorescence image of compound 6YT activated by different concentration of exogenous H$_2$O$_2$ (Figure S11).......................S8
7. Fluorescence image of compound 6YT activated by endogenous H$_2$O$_2$ in different cell lines. (Figure S12-S15)..........................S9
1. Synthetic procedure of 6YT

Scheme S1. Synthesis of 6YT
2. The spectra of 1H NMR, 13C NMR

Figure S1. 1H NMR spectrum (600 MHz) of compound 1 in DMSO-d_6.

Figure S2. 1H NMR spectrum (600 MHz) of compound 2 in CDCl$_3$.
Figure S3. 1H NMR spectrum (600 MHz) of compound 3 in DMSO-d_6.

Figure S4. 1H NMR spectrum (600 MHz) of compound 4 in CDCl$_3$.
Figure S5. 1H NMR spectrum (500 MHz) of compound 5 in DMSO-d_6.

Figure S6. 1H NMR spectrum (500 MHz) of 6YT in DMSO-d_6.
Figure S7. 13C NMR spectrum (126 MHz) of 6YT in DMSO-d_6.

3. HR-ESI-MS spectrum of compound 6YT

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>1001.3371</th>
<th>Result type:</th>
<th>Positive ions</th>
<th>Species:</th>
<th>[M+Na]$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (6-80); H (0-120); O (0-30); Na (0-5) ; Br(0-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C52H55[11B]NaO18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated m/z</td>
<td>1001.3374</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>PPM Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S8. HR-ESI-MS spectrum of compound 6YT.
4. pH dependence of 6YT in the absence and presence of H$_2$O$_2$

![Graph showing fluorescence intensity vs pH](image)

Figure S9. Fluorescence emission intensity (458 nm) of 6YT (10 µM) and 6YT + H$_2$O$_2$ (300 µM) to various pH (5.0-9.0) in PBS buffer (10 mM, pH 7.4, 0.1% DMSO) after incubation for 60 min.

5. Monitoring of Etoposide release by RP-HPLC

![Graph showing etoposide release vs time](image)

Figure S10. Etoposide release (%) from 6YT (100µM) in PBS (pH 7.4) in the presence (red squares) or absence (black circles) of H$_2$O$_2$ (10mM).
6. Fluorescence image of compound 6YT activated by different concentration of exogenous H$_2$O$_2$

![Image](image.png)

Figure S11. (A) Fluorescence images of A549 cell lines treated with increasing concentrations of H$_2$O$_2$ (0, 100 and 200 µM) for 2h after incubated with compound 6YT (10 µM) for another 2 h(a-c), and the bright field(d-f). Scale bar = 20 µm. (B) The relative fluorescence intensities of a-c were measured at three regions in each dish. Error bars represent standard deviation (n = 3).
7. Fluorescence image of compound 6YT activated by endogenous H_2O_2 in different cell lines.

Figure S12. (A) Fluorescence images of A549 cell lines incubated with compound 6YT (10 µM) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 µm. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

Figure S13. (A) Fluorescence images of HCT-116 cell lines incubated with...
compound 6YT (10 µM) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 µm. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

Figure S14. (A) Fluorescence images of MCF-10A cell lines incubated with compound 6YT (10 µM) for (a)0h, (b)2 h, (c)4h, (d)8h and (e)12h. Scale bar = 20 µm. (B) The relative fluorescence intensity of a-e were measured at three regions in each dish. Error bars represent standard deviation (n = 3).

Figure S15. (A) Fluorescence images of A549 cell lines incubated with
increasing concentration of compound 6YT (a)0µM, (b)1.25µM, (c)2.5µM, (d)5µM, (e)10µM and (f)20µM for 12h. Scale bar = 20 µm. (B) The relative fluorescence intensity of a-f were measured at three regions in each dish. Error bars represent standard deviation (n = 3).