A Novel Multifunctional Carbon Aerogel Coated Platform for Osteosarcoma Therapy and Enhanced Bone Regeneration

Shaojie Dong,^{a,b,#} Ya-nan Zhang,^{c,#} Jianyu Wan,^b Rongrong Cui,^c Xingge Yu,^{a,b} Guohua Zhao,^{c,*} Kaili Lin^{b,*}

^aSchool & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.

^bDepartment of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China. ^cSchool of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

[#]These two authors contributed equally to this work.

*Corresponding author: Tel: 86-21-23272699; Fax: 86-21-63136856. E-mail: <u>lklecnu@aliyun.com</u> (K. Lin) & <u>g.zhao@tongji.edu.cn</u> (G. Zhao).

Fig. S1. The digital pictures of (a) β -TCP and β -TCP-C discs ($\varphi 10 \times 2 \text{ mm}^3$) used *in vitro*, (b) β -TCP and β -TCP-C scaffolds ($\varphi 5 \times 2 \text{ mm}^3$) and (c) β -TCP and β -TCP-C scaffolds ($2 \times 2 \times 6 \text{ mm}^3$) used *in vivo*.

Fig. S2. Characterizations of β -TCP-C scaffolds. (a) SEM images of β -TCP and β -TCP-C scaffolds (yellow arrows, carbon aerogel). (b) The morphology and corresponding element mapping on the fracture of β -TCP-C scaffolds.

Fig. S3. Deconvoluted Raman spectroscopies of β -TCP-C.

Fig. S4. The surface topography of β -TCP and β -TCP-C discs measured with AFM.

Fig. S5. The HE staining results of major organs excised on day 14 after implantation.

Fig. S6. The evaluation of protein adsorbing activity. (a) The fluorescence images of Alex Fluor 594 conjugated Goat Anti-Mouse IgG on the surface of β -TCP and β -TCP-C discs, respectively. (b) The quantitive detection of BSA adsorbed on the surface of β -TCP and β -TCP-C discs (n = 3, *p < 0.05).

Fig. S7. The biodegradation behavior of β -TCP and β -TCP-C discs after soaking in Tris-HCl solution (pH 7.4) up to 28 days.

Fig. S8. The SEM images of BMSCs cultured on β -TCP and β -TCP-C discs for 6 h.

Fig. S9. The evaluation of calcium nodules formed on β -TCP and β -TCP-C discs after culturing of BMSCs for 21 days. (a) The images of Alizarin Red S stained calcium nodules. (b) Quantitive detection of Alizarin Red S dyed on calcium nodules (n = 3, *p < 0.05).

Fig. S10. The schematic diagrams of (a) construction of full-thickness bone defects on calvaria region and (b) implantation of β -TCP and β -TCP-C scaffolds.