SUPPLEMENTARY INFORMATION

Structural Colour Contact Lens Sensor for Point-of-Care Ophthalmic Health Monitoring

Yunlong Wang1,#, Qilong Zhao1,#, Xuemin Du1*

1Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China. #These authors contributed equally to this work.

*Corresponding author. Email: xm.du@siat.ac.cn; Telephone: +86-755-86392652

Supplementary Table

Table 1 Average sizes and particle distribution index (PDI) of silica colloids used for the formation of structural color contact lens sensors with different colors

<table>
<thead>
<tr>
<th></th>
<th>Colloids for preparing red sensor</th>
<th>Colloids for preparing green sensor</th>
<th>Colloids for preparing blue sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average size</td>
<td>356±18 nm</td>
<td>240±11 nm</td>
<td>180±9 nm</td>
</tr>
<tr>
<td>PDI</td>
<td>0.050</td>
<td>0.046</td>
<td>0.050</td>
</tr>
</tbody>
</table>
Figure S1 FTIR spectrum of the hydrogel contact lens sensor, demonstrating its pure composition of PHEMA only.

Figure S2 The reflection spectra of the fresh red-colour contact lens sensor and the one stored in water for 2 months, demonstrating that there is no significant difference in optical properties between them.
Figure S3 The plot demonstrating the change of the wavelength of reflectance peak with respect to the water loss percentage.

Figure S4 The plot demonstrating the change of the wavelength of reflectance peak with respect to the pressure within the range of 0-40 kPa.