Supporting Information

SiC$_x$N$_y$:Fe films as a tunable ferromagnetic material with tailored conductivity

Roman Pushkareva, Nadezhda Fainera, Victor Kirienkob, Alexey Matsyninc, Vladimir Nadolinnyya, Ivan Merenkovad, Svetlana Trubinab, Simon Ehrenburga,e, Kristina Kvashninag

b. Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, pr. Acad. Lavrent’ev, 13, 630090, Russia.
c. Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Akademgorodok 50, 38, 660036, Russia.
d. Ural Federal University, Ekaterinburg, st. Mira, 19, 620002, Russia.
e. Budker Institute of Nuclear Physics, Siberian Branch Russian Academy of Sciences, pr. Acad. Lavrent’ev, 11, Novosibirsk, 630090, Russia.
f. Rossendorf Beamline at ESRF, 38043, Grenoble, France.
g. HZDR, Institute of Resource Ecology, 01314, Dresden, Germany.
Fig. S1. Surface morphology of SiC\(_x\)N\(_y\):Fe films deposited from gaseous mixture of TDEAS, ferrocene and hydrogen at (a) – 800°C, (b) – 900°C, (c) – 1000°C

Fig. S2. Surface morphology of SiC\(_x\)N\(_y\):Fe films deposited from gaseous mixture of TDEAS, ferrocene and ammonia at (a) – 800°C, (b) – 900°C, (c) – 1000°C

Fig. S3. Raman spectra of SiC\(_x\)N\(_y\):Fe films deposited from gaseous mixture of (a) – TDEAS, ferrocene and hydrogen and (b) – TDEAS, ferrocene and ammonia

Fig. S4. Magnetization curves of the SiC\(_x\)N\(_y\):Fe films deposited at 900-1000 °C from (a, b) – H\(_2\)-containing gas mixture and (c, d) – ammonia-containing gas mixture

Fig. S5. Raman spectra of SiC\(_x\)N\(_y\):Fe films deposited from gaseous mixture of (a) – TDEAS, ferrocene and hydrogen and (b) – TDEAS, ferrocene and ammonia
Fig. S5. XRD pattern of the SiCNₓ:Fe film deposited at 1000 °C from ammonia-containing gas mixture.