Supporting Information for

High-performance blue fluorescent/electroactive polyamide bearing p-phenylenediamine and asymmetrical SBF/TPA-based units for electrochromic and electrofluorochromic multifunctional applications

Fig. S1 FTIR spectra of the compounds 4-nitro-4-methoxydiphenylamine, SBF-NO₂, SBF-NH₂, SBF-2NO₂ and SBF-2NH₂. ...2

Fig. S2 FTIR spectra of SBF-HPA and SBF-DPA. ..2

Fig. S3 ¹H NMR spectra of SBF-HPA and SBF-DPA. ...3

Fig. S4 DSC curves of SBF-HPA and SBF-DPA. ..3

Fig. S5 TGA curves of SBF-HPA and SBF-DPA..4

Fig. S6 (a) Cyclic voltammetric diagrams of SBF-DPA at a scan rate of 50 mV s⁻¹. (b) Absorbance spectra of SBF-DPA thin film electrode in 0.1 M TBAP/CH₃CN at different applied potentials from 0.00 to 1.15 V...4

Fig. S7 (A) EC switching of SBF-HPA film between 0.00 and 1.15 V with a cycle time of 20 s: (a) transmittance changes and (b) current consumption at the monitored wavelength of 850 nm. (B) Optical switching time at 850 nm. ...5

Table S1. Molecular Weights and Solubilities of SBF-HPA and SBF-DPA.................................5

Table S2. Thermal properties of SBF-HPA and SBF-DPA..5
Fig. S1 FTIR spectra of the compounds 4-nitro-4-methoxydiphenylamine, SBF-NO$_2$, SBF-NH$_2$, SBF-2NO$_2$ and SBF-2NH$_2$.

Fig. S2 FTIR spectra of SBF-HPA and SBF-DPA.
Fig. S3 1H NMR spectra of SBF-HPA and SBF-DPA.

Fig. S4 DSC curves of SBF-HPA and SBF-DPA.
Fig. S5 TGA curves of SBF-HPA and SBF-DPA.

Fig. S6 (a) Cyclic voltammetric diagrams of SBF-DPA at a scan rate of 50 mV s\(^{-1}\). (b) Absorbance spectra of SBF-DPA thin film electrode in 0.1 M TBAP/CH\(_3\)CN at different applied potentials from 0.00 to 1.15 V.
Fig. S7 (A) EC switching of SBF-HPA film between 0.00 and 1.15 V with a cycle time of 20 s: (a) transmittance changes and (b) current consumption at the monitored wavelength of 850 nm. (B) Optical switching time at 850 nm.

Table S1. Molecular Weights and Solubilities of SBF-HPA and SBF-DPA.

<table>
<thead>
<tr>
<th>Sample</th>
<th>M_w</th>
<th>M_n</th>
<th>PDI</th>
<th>NMP</th>
<th>DMA</th>
<th>DMF</th>
<th>DMSO</th>
<th>THF</th>
<th>CHCl$_3$</th>
<th>CH$_3$CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBF-HPA</td>
<td>9530</td>
<td>9200</td>
<td>1.04</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>SBF-DPA</td>
<td>5560</td>
<td>4020</td>
<td>1.38</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
</tbody>
</table>

a Relative to polystyrene standard, using DMF as the eluent. b Qualitative solubilities were tested with 10 mg of polymers in 1mL of solvent. ++, soluble at room temperature; +, partially soluble; --, insoluble even on heating.

Table S2. Thermal properties of SBF-HPA and SBF-DPA.

<table>
<thead>
<tr>
<th>Sample</th>
<th>T_g (°C)a</th>
<th>$T_{d5%}$ (°C)b</th>
<th>$T_{d10%}$ (°C)b</th>
<th>Char yield (wt %)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBF-HPA</td>
<td>254</td>
<td>427</td>
<td>458</td>
<td>71</td>
</tr>
<tr>
<td>SBF-DPA</td>
<td>270</td>
<td>433</td>
<td>507</td>
<td>72</td>
</tr>
</tbody>
</table>

a Obtained at the baseline shift in the second heating DSC traces, with a heating rate of 10 °C/min under N$_2$.

b Decomposition temperature at which a 5 or 10% weight loss was recorded via TGA at a heating rate of 10 °C/min.

c Residual weight percentage at 800 °C in N$_2$.