Supporting Information

Chang Shen1,2, Anxun Zheng1, Huang Min1, Qian Tang1, Cheng-Bin Gong1* and Cheuk-Fai Chow1,2*

1Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po Hong Kong SAR, China and College of Chemistry and Chemical Engineering, Southwest University, Chong Qing, China

2Centre for Education in Environmental Sustainability, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China

*Email: cfchow@eduhk.hk
Figure S1. FTIR of the $K_4[Fe(CN)_6]$, $K_4[Fe(CN)_6]/TiO_2$, $Fe_4[Fe(CN)_6]_3$ and NP1.

Figure S2. FTIR of the $K_4[Ru(CN)_6]$, $K_4[Ru(CN)_6]/TiO_2$, $Fe_4[Ru(CN)_6]_3$ and NP2.
Figure S3. FTIR of the $\text{K}_4[\text{Os(CN)}_6]$, $\text{K}_4[\text{Os(CN)}_6]/\text{TiO}_2$, $\text{Fe}_4[\text{Os(CN)}_6]_3$ and NP3.
Figure S4. TEM images of TiO$_2$ and NP1–3
Figure S5. X-ray powder diffraction patterns of TiO\textsubscript{2} and NP1–3.
Figure S6. UV-vis spectra of (a) $\text{Fe}_4[\text{Fe(CN)}_6]_3$, $\text{Fe}_4[\text{Ru(CN)}_6]_3$, and $\text{Fe}_4[\text{Os(CN)}_6]_3$, and (b) NP1–NP3 in DI water.
S.Table 1. Method detection limits (MDLs) and binding constants (log K) of CN$^-$ by NP1–3.

<table>
<thead>
<tr>
<th></th>
<th>NP1</th>
<th>NP2</th>
<th>NP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDL (ppm)</td>
<td>1.10</td>
<td>0.60</td>
<td>0.83</td>
</tr>
<tr>
<td>log K</td>
<td>7.52 ± 0.04</td>
<td>7.46 ± 0.04</td>
<td>7.44 ± 0.02</td>
</tr>
</tbody>
</table>

Figure S7. (a) UV–vis spectroscopic titrations of NP1 (250 ppm) with CN$^-$ (0–13 ppm) and (b) The slope and y intercept are -4.60×10^{-8}M2 and -1.55, respectively, log K = 7.52 ± 0.04 at 681 nm. (c) Photographs of the colorimetric responses of NP1 (250 ppm) toward different concentration of CN$^-$ (0–13 ppm). All the experiments were carried out in deionized water.
Figure S8. (a) UV–vis spectroscopic titrations of NP3 (250 ppm) with CN⁻ (0–13 ppm) and (b) The slope and y intercept are -1.11×10^{-7}M² and -3.00, respectively, log $K = 7.44 \pm 0.02$ at 570 nm. (c) Photographs of the colorimetric responses of NP3 (250 ppm) toward different concentration of CN⁻ (0–13 ppm). All the experiments were carried out in deionized water.
Figure S9. (a) Summary of UV-vis spectroscopic titrations (A/A_0 at 681 nm) of NP1 (250 ppm) with various analytes including CN^−, aniline (AN), 1,5-naphthalenedisulfonic acid (NSA), benzoic acid (BA), and 4-nitrophenol (PNP) monitored as a function of increasing of their concentration (1−13 ppm). (b) Photos of the colorimetric responses of NP1 (250 ppm) with various analytes (13 ppm): from left to right is CN^−, AN, NSA, BA, PNP and control.
Figure S10. (a) Summary of UV-vis spectroscopic titrations (A/A_0 at 570 nm) of NP3 (250 ppm) with various analytes including CN$^-$, aniline (AN), 1,5-naphthalenedisulfonic acid (NSA), benzoic acid (BA), and 4-nitrophenol (PNP) monitored as a function of increasing of their concentration (1–13 ppm). (b) Photos of the colorimetric responses of NP3 (250 ppm) with various analytes (13 ppm): from left to right is CN$^-$, AN, NSA, BA, PNP and control.
Figure S11. UV−vis spectroscopic titrations of K₄[MA(CN)₆] (MA = (a) Fe, (b) Ru, (c) Os = 1 × 10⁻⁴ M) with FeCl₃ (0–1 × 10⁻⁴ M). All the experiments were carried out in deionized water.
Figure S12. (a) The degradation efficiencies of CN⁻ by NP1-3 in aqueous medium against reaction time. Reaction conditions: catalyst = 500 ppm, CN⁻ = 26 ppm, T = 298 K, and the light source is a 300 W Hg(Xe) light.

Figure S13. Concentration changes of CN⁻ and OCN⁻ during the degradation of CN⁻ by NP1 in aqueous medium against reaction time. Reaction conditions: NP1 = 500 ppm, CN⁻ = 26 ppm, T = 298 K, 3h, and the light source is a 300 W Hg(Xe) light.
Figure S14. Repeatability of the oxidation of cyanide ions by NP1 (500 ppm) with replenishing of Fe(III) in each addition as 44.8 ppm All the degradations were conducted as follows: NP1 = 500 ppm, CN\(^{-}\) = 26 ppm, T = 298 K, 3h, and the light source is a 300 W Hg(Xe) light.

Figure S15. Repeatability of the oxidation of cyanide ions by NP3 (500 ppm) with replenishing of Fe(III) in each addition as 44.8 ppm All the degradations were conducted as follows: NP3 = 500 ppm, CN\(^{-}\) = 26 ppm, T = 298 K, 3h, and the light source is a 300 W Hg(Xe) light.